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Summary

• Complex systems are (nearly) irreducible 
(incompressible), depend on a large number of 
variables in a significant way. 

• Irreducibility is related to (implies?) large, 
random correlations

• Illustration on two toy models: on a spin glass 
and a random cellular automaton

• Some consequences: e.g. simulation of such 
systems is a delicate issue, the result depends on 
tiny details, initial and boundary conditions.



Preliminary considerations

• It is plausible that in a system that depends on a large 
number of variables the correlations between its 
components must be „long-ranged” in some sense. 

• As complex systems are not translationally invariant, 
„long-ranged” means strong correlations between 
many pairs, though not necessarily geometrical 
neighbours.

• The usual behaviour of correlations in simple systems 
is not like this: correlations fall off typically 
exponentially – which is why simple systems fall 
apart into small, weakly correlated subsystems, and 
have low effective dimension.



The difficulties of defining complexity

There are nearly as many complexity definitions as there 

are authors in complexity.

The AIT definition: the length of the shortest algorithm 

that is able to produce a given string is the measure of 

the complexity of the string. 

Some authors emphasize emergence, confluence of scales, 

nonlinearity, unpredictability, path dependence, 

historicity, multiple equilibria, a mixture of sensitivity 

and robustness, learning and adaptability, and, 

ultimately, self-reflection, self-representation, 

consciousness as characteristics of complex systems.



When trying to formulate a common policy of 

sponsoring complexity research in Europe 

Complexity-NET, a network of European 

funding agencies, came to the conclusion that 

finding a compelling definition was a 

hopeless endeavour on which no more time 

should be wasted.

A possible alternative is to list examples: 

complex systems include the living cell, the 

brain, society, economy, etc.



Irreducibility

G. Parisi at the 1999 STATPHYS Conference in Paris: A 
system is complex if it depends on many details.

This suggests the idea of using the degree of 
irreducibility, perhaps the effective dimensionality (the 
number of variables) of the simplest model one can 
construct to describe the system to a given level of 
precision, as a measure of complexity. 

NB: This definition shares the shortcomings of the algorithmic complexity 
concept: it assigns maximal complexity to noise, and it is probably 

impossible to decide which model is the simplest.



The incompressibility of history 

For the want of a nail the shoe was lost;

For the want of a shoe the horse was lost;

For the want of a horse the battle was lost;

For the failure of battle the kingdom was 
lost;—

And all for the want of a horseshoe nail.

Background: The Battle of Bosworth Field in 1485, between 
the armies of King Richard III and Henry, Earl of 
Richmond, that determined who would rule England. 



A more serious example

10 days survival probability of patients after a 

heart attack. Depends on some 40 factors. Such a 

model cannot be parametrized even on a 

population of 10 million (overfitting). Yet health 

policy decisions depend on such analyses.

(Peter Austin at the 2007 AAAS meeting) 

The simplest tool to analyze such problems is 

linear regression.



Linear regression:
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Ideally, the number of dimensions N is small and the 

length of the available time series T is long. Then the 

estimation error is small, and the model works fine.

If the system is complex, however, we will have a very 

large N, and that raises serious estimation error and 

convergence problems.

When a huge number of regression coefficients are 

roughly equal, we do not have structure, the model 

produces noise.

It may happen, however, that the regression coefficients 

are not equal, but do not have a cutoff beyond which 

they would become insignificant either: they may not 

have a characteristic scale, but fall off like a power.



But: large regression coefficients imply large 
correlations: 

If the independent variables are uncorrelated 
then the regression coefficients are 
proportional to the covariances between the 
dependent variable and the idependent 
variables
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This suggests the idea to look into some toy 
models and see if large correlations may 
indeed be a characteristic feature of 
complex systems.

Two toy models will be studied here:

The +/-J „long range” spin glass

and a

Random cellular automaton



The spin glass: A model of 

cooperation and competition

An Ising-like model with random couplings:

where                      are randomly scattered over 

the lattice or graph. For simplicity we keep to 

the complete graph in the following.



On a small complete graph, e.g…

The red edges represent 

negative 

(„antiferromagnetic”)

couplings. Spins 

linked by such a 

negative coupling 

would like to point in 

opposite directions.



The optimal arrangement of the spins is a 

distribution of plus-minus ones, correlated 

with the distribution of couplings in a 

complicated manner. Even the optimal 

arrangement can contain a lot of tension: 

not all the couplings can be satisfied 

simultaneously. 



Frustration

The presence of negative couplings leads to „frustration”: 

one may have two friends who hate each other. Such a 

trio cannot be made happy. In the little example

the triangles containing an 

odd number of red edges are frustrated.



Frustration makes the overall bonding much 
weaker: the ground state energy is higher than 
for a pure system. At the same time the 
degeneracy of low lying states (the multiplicity 
of states with the same energy) is much 
enhanced. 

For large N, the low temperature structure of such 
a model can be extremely complicated, with 
several nearly degenerate minima and their 
basins of attraction cutting up the set of 
microscopic states into a set of „pure states” or 
„phase space valleys”.



A central concept in the characterization of 

this structure is that of the overlap:

which measures the degree of similarity 

between two states.

 
i

ii ss
N

q 


1



Correlations in ordinary lattice models

Normally, correlations fall off exponentially 
except

- at the critical point

- in the ordered phase of models with a broken 
continuous symmetry.

An Ising spin glass does not have any continuous 
symmetry, there is no a priori reason to expect 
long range correlations.



Correlations in spin glasses

Due to the random structure of the model, the 

correlations                   behave in a chaotic, random 

manner as a function of distance. When averaged over 

the random distribution of the couplings they become 

a trivial Kronecker delta: 

For this reason it has been customary to study higher 

order average correlations, often defined for a given 

average overlap. 
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Some of these correlation functions:
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Correlation in one phase space valley

A natural combination of the above correlation 

functions, computed in the Gaussian 

approximation via replica field theory, turned 

out to be long-ranged (De Dominicis, 

Temesvári, I.K.):
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Correlations between distant valleys

Remarkably, the overlap between correlation 
functions belonging to phase space valleys with 
zero overlap also was found long-ranged:

So the average correlations are long-ranged in 
spin glasses.
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Correlations in a given sample

It may also be of interest to look into the 
distribution of correlations as random variables 
in a given sample. In order to do this, we 
measured all the N(N-1)/2 correlations           
and ranked them according to magnitude. Exact 
enumeration on small systems (up to N=20) and 
numerical simulations up to N = 2048 indicate 
that the correlations are anomalously large in 
the low temperature spin glass. 

Some preliminary results follow. 
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Sorted correlations for two samples of size N=128, 

at low temperature (T=0.4), averaging over all 

microstates



The same for two samples of size N= 2048, at 

T=0.4, averaging over all microstates



The sorted distribution is the inverse of the 
cumulative distribution function.

For large N the sample to sample fluctuations 
disappear, the distribution can, in principle, be 
calculated via replicas. 

The sorted correlations suggest that their 
probability distribution is very broad, maybe 
uniform, or even bimodal!

Note the apparent symmetry of the sorted 
distribution which does not correspond to any 
exact symmetry of the system.



When we go above the critical 

temperature T=1: N=128, T=1.3

Note the change 

of scale! Most 

correlations are 

very small now.



N=2048, T=1.3 

For this large system 

the correlations 

are even smaller. 

Clearly, for N large 

the number of 

large correlations 

is O(N), which is 

negligible on 

the scale of the 

figure, O(N²)



The main points

There is a marked difference between the high and 

low temperature phases. Correlations are strong 

all through the low temperature phase.

A replica calculation shows that the distribution of             

is symmetric, and its second moment 

is the same as the second moment of the overlap 

distribution P(q).
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A random cellular automaton 

RCA

The model is a finite T variant of the 

Kauffman automaton.

It is a collection of binary variables again, this 

time living on a 2d lattice. They update their 

state according to the configuration of their 

neighbours.



RCA update rule

s1 s2 s3 K

1 1 1 0.3

1 1 -1 -0.6

1 -1 1 0.4

1 -1 -1 0.5

-1 1 1 -0.9

-1 1 -1 0.01

-1 -1 1 0.5

-1 -1 -1 -1.2

Table of interactions

„Hamilton function” with the K’s N(0,1) 

distributed:



From this point on the simulation of the model 

runs along the usual Monte Carlo path 

The results are shown parallel to the same for 

the Ising model.

Note that this is a lattice model, so there is a 

geometry behind it (distance, neighbourhood, 

etc. make sense), and we can ask questions 

about the geometric distribution of large 

correlations.



Sorted correlations



Distribution functions



Density functions



RCA vs. Ising model 

(standard deviation of correlations)



Max correl vs. distance



Strong and weak correlations are randomly 

scattered about the system. Two strongly 

correlated spins may not be connected by 

strongly correlated paths.

See little demo



Linear regression (RCA model)

The sorted coefficients (N=100, T=2)



Concluding remarks

Randomly distributed large correlations may be a general 
characteristic of complex systems. In this sense complex 
systems may be regarded as critical in a wide region of 
parameter space.

This property may explain their sensitivity to changes in the 
control parameters, boundary conditions, initial conditions 
and other details, even for large sizes (e.g. chaos in spin 
glasses).

It also calls for caution when doing, and drawing conclusions 
from, simulations of such systems.

Strong random correlations redefine the geometry of the 
system. Problems of the RG and the thermodynamic limit.



Thank you!



Appendix 



The Ising model: a model of cooperation

N „spins” i = 1,2,…,N, having a binary choice

. The spins are coupled by  

ferromagnetic interaction, they want to minimize 

the energy

The „magnetic field”  h wants to align all the spins 

with itself.



This is a simple description of magnetism and a 

host of other cooperative phenomena.

The total number of microscopic arrangements 

of the spins is      . The model has two 

optimal states (ground states): All spins +1 

(up), or -1 (down).

„Finite temperature”: some spins fail to 

comply.

N2



Averaging

Averages at temperature T are calculated over the 
whole ensemble of microscopic states, with the 
Boltzmann-weight  ~ exp{-H/T}.

Alternatively, we define a Monte Carlo dynamics 
on the system, and measure time averages.

Pick initial state, calculate its energy      . Flip 

randomly chosen spin, calculate new energy . 
Accept new state if                      < 0, 

and accept new state with 

probability                         , if                         > 0.
T
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The underlying geometry

Such a model can be 

implemented on a 

regular lattice, like 

the 2d square lattice 

shown here



on a random graph



or on a complete graph:

Full circles mean spins +1, empty ones -1.



Phase transition

At high temperatures the acceptance rate of „bad 
moves” is nearly as large as that of the good 
moves, the system is totally disordered. As T is 
lowered, the tendency of cooperation gradually 
overcomes thermal agitation. If the graph is 
sufficiently large and connected, at a critical 
temperature a sharp transition takes place to a 
spontaneously ordered state, with the majority of 
spins pointing, say, up, even without the help of 
the external field h.

For the 2d square lattice the value of this critical 
temperature is                  .



Correlations in the Ising model

The correlations                     between the spins 

at lattice sites i and j are short-ranged (fall off 

exponentially with distance) above the critical 

temperature. (The angular brackets denote the 

thermal average.) 

A typical formula is

where ξ is the coherence length.
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Below the critical temperature the system is 

polarized, so K tends to a constant, but its 

„connected part”                                         

is decaying exponentially again.



The critical state

As the temperature goes to its critical value,           ,

the coherence length diverges:                   .

Right at the critical point correlations in the system 

become long-ranged. There is no characteristic 

distance beyond which they would become 

negligible, they fall off like a negative power of 

the distance:
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As a direct consequence, the system becomes 

extremely sensitive to changes in the 

control parameters, such as the external 

field: even an infinitesimal h provokes a 

large response.

Note, however, that in order to reach the 

critical point one has to fine tune the 

parameters of the model, this is an 

exceptional point where even the humble 

Ising model becomes complex.



Models with broken continuous symmetry

If instead of the binary Ising spins we consider little vectors 

that can rotate in 3d space and interact via a scalar 

product-like coupling, we arrive at the Heisenberg 

model. This has a continuous (rotation) symmetry. When 

the system orders, it develops a macroscopic 

magnetization and the rotation symmetry is broken.

We can now define two different correlation functions: the 

longitudinal one corresponding to fluctuations parallel to 

the magnetization, and the transverse one that is 

perpendicular to it.



Goldstone modes

The transverse correlation function can exactly be 
shown to fall off like a power all through the 
ordered phase:

,    

Such long-ranged behaviour always appears when 
a continuous symmetry is broken. 

Complex systems are typically very 
inhomogeneous, they do not display any 
symmetry. There seems to be no reason to 
expect them to have long-range correlations.
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