Information Processing in Cortical Neural Networks with Dynamic Synaptic Connections

Misha Tsodyks Weizmann Institute of Science

Complexity in Jerusalem 2008

Feed-forward networks: Perceptron

Simple network

Recurrent networks

Memory patterns as network attractors

Purkinje cell reconstruction

Rapp, Yarom & Segev 1992

Multi-compartment modelling

Short-term Synaptic Plasticity

A Phenomenological Approach to Dynamic Synaptic Transmission

- 4 Key Synaptic Parameters
 - Absolute strength
 - Probability of release
 - Depression time constant
 - Facilitation time constant

A Phenomenological Approach to Dynamic Synaptic Transmission

- 4 Key Synaptic Parameters
 - Absolute strength
 - Probability of release
 - Depression time constant
 - Facilitation time constant
- 2 Synaptic Variables
 - Resources available (x)
 - Release probability (u)

A Phenomenological Approach to Dynamic Synaptic Transmission

- 4 Key Synaptic Parameters
 - Absolute strength
 - Probability of release
 - Depression time constant
 - Facilitation time constant
- 2 Synaptic Variables
 - Resources available (x)
 - Release probability (u)

$$\frac{du}{dt} = -\frac{u - U}{\tau_f} + U(1 - u)\delta(t - t_{sp})$$
$$\frac{dx}{dt} = \frac{1 - x}{\tau_d} - ux\delta(t - t_{sp})$$

Testing the Model: Depressing Synapses

Tsodyks & Markram 1997

Testing the Model: Depressing Synapses

 $U \square 0.5 \quad \tau_d \square 1 \text{sec} \quad \tau_f \to 0$

Facilitation ($\tau_f >> \tau_d$ **)**

Facilitation ($\tau_f >> \tau_d$ **)**

$U \square 0.1$ $\tau_d \square 0.1 \operatorname{sec}$ $\tau_f \square 1 \operatorname{sec}$

Abbott et al 1997, Tsodyks & Markram 1997

Synaptic depression and neural signalling

Synaptic depression and neural signalling

Spiking activity -> Synaptic current

Recurrent networks with synaptic depression

Integrate and fire model of a spiking neuron

Dynamics of a membrane voltage

 $\tau \dot{V} = -V + R_{in}I_s$

Threshold: if $V(t) = \Theta$, A spike has occurred Reset: $V(tsp+0) = V_{reset}$

Synaptic current: $I_s(t) = \sum_{sp} i_s(t - t_{sp})$

Simulation of Network Activity

Simulation of Network Activity

Tsodyks, Uziel & Markram 2000

Experimental evidence for population spikes

DeWeese & Zador 2006

Simplified model (no inhibition, uniform connections, rate equations)

The rate model equations

• There are two sets of equations representing the excitatory units firing rate, E, and their depression factor, x : ^{*t*}

$$\tau \frac{dE_i}{dt} = -E_i + \left[\frac{J}{N}\sum_{j=1}^N E_j x_j + e_i\right]_+$$

$$\frac{dx_i}{dt} = \frac{1 - x_i}{\tau_r} - ux_i E_i$$

Loebel & Tsodyks 2002

Bifurcation

Tonic input

The tonic stimuli is represented by a constant shift of the {e}'s, that, when large enough, causes the network to spike and reach a new steady state

Response of A1 neurons to tonic sounds

DeWeese et al J. Neurosci. 2003

Extended model – A1

Loebel, Nelken & Tsodyks 2007

Network response to complex stimuli

Network response to complex stimuli

Synaptic theory of working memory

Memory patterns as network attractors

Persistent activity

Wang, Markram et al, Nature Neuroscience 2006

New idea

- To hold short-term memories with facilitation level of recurrent connections
- Use spiking activity only when the memory is needed for processing, and/or to refresh the synapses ('rehearsal').

Mongillo, Barak & Tsodyks 2008

Integrate and fire network simulations

Thanks to:

Henry Markram (WIS)

Asher Uziel (WIS), Alex Loebel (WIS) & Eli Nelken (HUJI)

Gianluigi Mongillo (ENS) & Omri Barak (WIS)