An Agent-based Model of Employment, Production and Consumption

Lin Lin

Christian-Albrechts-University in Kiel, Germany emailtolinlin@yahoo.com

International Workshop on Challenges and Visions in the Social Sciences ETH, Zurich, Switzerland

August 18-23, 2008

- Complicated \neq complex (by Prof. Barkley Rosser)
- Can simplicity generate complexity?
- Can one model explain many things?

Motivation

- The idea is based on Ian Wright: The Social Architecture of Capitalism, Physica A, 2005
- Simulation: relation between capitalist and workers

 \hookrightarrow relation of production:

A minority of firm owners employ a majority of workers in firms of various sizes, the firms produce goods and services for sale in the marketplace.

The firm owners collect revenue and workers receive a share of the revenue in the form of wages.

 \hookrightarrow relation of production:

A minority of firm owners employ a majority of workers in firms of various sizes, the firms produce goods and services for sale in the marketplace.

The firm owners collect revenue and workers receive a share of the revenue in the form of wages.

 Advantages: it generates many empirical distributions within a single causal network

Our work: keep its advantages, adjust and create new simulation rules – whether it explains more distributions, or better?

- Initialization:
 - Economic actors i = 1...N can be either Employer (E), Worker
 (W) or Unemployed (U) → the total population A = E + W + U
 - Each actor i at t = 0 holds an equal amount of money m (coins)
 - A market is created with $V=100{\rm ,\ changes}$ with GDP growth rate
 - No employment relation

- Initialization:
 - Economic actors i = 1...N can be either Employer (E), Worker
 (W) or Unemployed (U) → the total population A = E + W + U
 - Each actor i at t = 0 holds an equal amount of money m (coins)
 - A market is created with $V=100{\rm ,\ changes}$ with GDP growth rate
 - No employment relation
- 3 exogenous parameters:
 - total number of actors N, (N=1,000)
 - initial money for actors \boldsymbol{m}
 - wage interval $w = [w_a, w_b]$,

(m=100)

(w = [10.90])

Intelligent actors: being reactive, proactive and social

Identify an actor by his employment state and money holding

Identify an actor by his employment state and money holding

Assign 100 coins to each actor, and starts the program

1. Actor Selection Rule

2. Hiring Rule

3. Revenue Rule

4. Firing Rule

Determine number of workers to fire: $u = max \left(|W_a| - \left[\frac{m_a}{\overline{w}}\right], 0 \right)$

 \rightarrow Select *u* from W_a (uniform)

5. Wage Payment Rule

Pay $w \in [w_a, w_b]$ (triangular) to each employee,

If $m_a < w$, select $w^* \in [w_a, m_a]$ (triangular)

If $m_a < w_a$, pay m_a to worker and goes bankrupt

6. Expenditure Rule

 $m_a \downarrow$ by m

1. Actor selection rule

a

Class size measure: After each month, count each class

▶ Gaussian classes: 18% employer, 80% employee, 2% unemployed

Firm size measure: After each month, count employees in each firm

 \blacktriangleright Lognormal firm size: small firms are majority, largest firm employs <10% total labor

▶ Firm growth measure: Calculate the yearly firm size by employee numbers, s_t, the growth rate is s_t/s_{t-1}

Laplace firm growth: firm growth rates depend negatively on size, small firms tend to experience either rapid growth or rapid decline ▶ GDP growth measure: Calculate firm revenues by the end of year as GDP, R_t , GDP growth rate $= R_t/R_{t-1}$

• Gaussian GDP growth rates cluster around μ with very small σ^2

Income shares measure: Wage share = wages paid to the workers in GDP; Profit share = 1- wage share.

• profit share (0.3) < wage share (0.7), ratios \rightsquigarrow Gaussian

Profit rate measure: calculate firm yearly profit rate, according to the division of the firm's revenue and total wage bill

 Gamma profit rate: profit rate distribution is right-skewed, both tails can be fitted into Gamma distribution

Income measure: record wage income by workers, and revenue income by firm owners

 Worker income cluster around mean, firm owner income has long tail; a "knee" shape with transition from exponential to power law.

► The model is also able to explain: Gaussian *firm-demise* distribution, Exponential *duration-of-recession* distribution...

Contributions:

- Simple game rules \longrightarrow empirical distributions
- Results not sensitive to either actor numbers or length of simulation
- Quick convergence

► The model is also able to explain: Gaussian *firm-demise* distribution, Exponential *duration-of-recession* distribution...

Contributions:

- Simple game rules \longrightarrow empirical distributions
- Results not sensitive to either actor numbers or length of simulation
- Quick convergence
- Future Work:
 - Keep the model simple, explore more applicability
 - Add more ingredients to the model, e.g., bank
 - Can it explain some phenomena in labor market or financial market?

Thank you for your attention!

- ► All rules are executed N times to allow each of the N actor an equal possibility to realize all the possible rules
- A year counter records every 12 applications of the monthly rule (Year=100)

Income measure: record wage income by workers, and revenue income by firm owners

 Wages as income paid to workers — Gaussian, higher tail of income by firm owners — Power law

Appendix – More Possible Distributions

Gaussian firm demise distribution

Firm demise measure: A firm demise occurs when a firm fires all its employees, count monthly firm demise number

• Gaussian firm demise: 10% yearly firm demise rate

Appendix – More Possible Distributions

Exponential duration of recession distribution

 Recession duration measure: A recession begins when the GDP declines, and ends when the GDP recovers

Exponential recession duration: average 1.7 years, max 7 years

