Gaussian Process Implicit Surfaces

Oliver Williams ${ }^{1}$

Microsoft Research and Trinity Hall
Cambridge, UK

Gaussian Processes in Practice Bletchley Park, 13 June 2006

Talk outline

Implicit surface modelling
Spline regularization as a Gaussian process
Covariance function
1D regression demonstration
GPIS for 2D curves
Covariance in 2D
Probabilistic interpretation
GPIS for 3D surfaces
Covariance function
Summary

Implicit surface

Scalar function $f(x)$ defins a surface wherever it passes through a given value (e.g., 0)

$$
\mathcal{S}_{0} \triangleq\left\{x \in \mathbb{R}^{d} \mid f(x)=0\right\} .
$$

Implicit surface

Scalar function $f(x)$ defins a surface wherever it passes through a given value (e.g., 0)

$$
\mathcal{S}_{0} \triangleq\left\{x \in \mathbb{R}^{d} \mid f(x)=0\right\}
$$

Example: Function $f(x)$ for $x \in \mathbb{R}^{2}$ defines a closed curve

Fitting to data points

Our setting (Turk and O'Brien 1999):

- Given a set of constraint points in 2D or 3D $\left\{x_{i}\right\}$, fit $f(x)$
- Have constraints at $f\left(x_{i}\right)=0$ on the curve and at ± 1 off it e.g.,
- Simple interior/exterior case
- Control normals to curve

Fitting to data points

Our setting (Turk and O'Brien 1999):

- Given a set of constraint points in 2D or 3D $\left\{x_{i}\right\}$, fit $f(x)$
- Have constraints at $f\left(x_{i}\right)=0$ on the curve and at ± 1 off it e.g.,
- Simple interior/exterior case
- Control normals to curve

Fitting to data points

Our setting (Turk and O'Brien 1999):

- Given a set of constraint points in 2D or 3D $\left\{x_{i}\right\}$, fit $f(x)$
- Have constraints at $f\left(x_{i}\right)=0$ on the curve and at ± 1 off it e.g.,
- Simple interior/exterior case
- Control normals to curve

Fitting to data points

Our setting (Turk and O'Brien 1999):

- Given a set of constraint points in 2D or 3D $\left\{x_{i}\right\}$, fit $f(x)$
- Have constraints at $f\left(x_{i}\right)=0$ on the curve and at ± 1 off it e.g.,
- Simple interior/exterior case
- Control normals to curve

Alternative method: parametric surface:
$x(t), y(t),[z(t)]$

- What t to assign to data points?
- How to handle different topologies?
- Can represent non-closed curves/surfaces

Topology change

Regularization

Find function passing through constraint points which minimizes thin-plate spline energy

$$
E(f)=\int_{\Omega}\left(\nabla^{\top} \nabla f(x)\right)^{2} d x
$$

Regularization

Find function passing through constraint points which minimizes thin-plate spline energy

$$
E(f)=\int_{\Omega}\left(\nabla^{\top} \nabla f(x)\right)^{2} d x
$$

Fit $f(x)$ with Gaussian process

Regularization

Find function passing through constraint points which minimizes thin-plate spline energy

$$
E(f)=\int_{\Omega}\left(\nabla^{\top} \nabla f(x)\right)^{2} d x
$$

Fit $f(x)$ with Gaussian process
Use covariance function equivalent to thin-plate spline

Gaussian distribution

- Follow derivation in (MacKay 2003) in 1D

Gaussian distribution

- Follow derivation in (MacKay 2003) in 1D
- consider the energy as a probability and define D as the linear differential operator

$$
E(f)=-\log P(f)+\text { const }=\int_{\Omega}\left(D^{2} f(x)\right)^{2} d x
$$

Gaussian distribution

- Follow derivation in (MacKay 2003) in 1D
- consider the energy as a probability and define D as the linear differential operator

$$
E(f)=-\log P(f)+\text { const }=\int_{\Omega}\left(D^{2} f(x)\right)^{2} d x
$$

- Use $f(\Omega)$ as vector of function values for all points in Ω :

$$
-\log P(f(\Omega))=f(\Omega)^{\top}\left[D^{2}\right]^{\top} D^{2} f(\Omega)
$$

Gaussian distribution

- Follow derivation in (MacKay 2003) in 1D
- consider the energy as a probability and define D as the linear differential operator

$$
E(f)=-\log P(f)+\text { const }=\int_{\Omega}\left(D^{2} f(x)\right)^{2} d x .
$$

- Use $f(\Omega)$ as vector of function values for all points in Ω :

$$
-\log P(f(\Omega))=f(\Omega)^{\top}\left[D^{2}\right]^{\top} D^{2} f(\Omega)
$$

- This is a Gaussian disribution with mean zero and covariance:

$$
C=\left(\left[D^{2}\right]^{\top} D^{2}\right)^{-1}=\left(D^{4}\right)^{-1} .
$$

Covariance function

- Entries of C indexed by $u, v \in \Omega$

$$
\int_{\Omega} D^{4}(u, w) c(w, v) d w=\delta(u-v) \Rightarrow \frac{\partial^{4}}{\partial r^{4}} c(r)=\delta(r)
$$

where we impose stationarity with $r=u-v$.

Covariance function

- Entries of C indexed by $u, v \in \Omega$

$$
\int_{\Omega} D^{4}(u, w) c(w, v) d w=\delta(u-v) \Rightarrow \frac{\partial^{4}}{\partial r^{4}} c(r)=\delta(r)
$$

where we impose stationarity with $r=u-v$.

- Interpret as spectral density and solve

$$
\begin{gathered}
\mathcal{F}[c(r)](\omega)=\omega^{-4} \\
\Rightarrow \quad c(r)=\frac{1}{6}|r|^{3}+a_{3} r^{3}+a_{2} r^{2}+a_{1} r+a_{0}
\end{gathered}
$$

Covariance function

$$
c(r)=\frac{1}{6}|r|^{3}+a_{3} r^{3}+a_{2} r^{2}+a_{1} r+a_{0}
$$

Find constants using constraints on $c(\cdot)$

- Symmetry: $a_{3}=a_{1}=0$

Covariance function

$$
c(r)=\frac{1}{6}|r|^{3}+a_{3} r^{3}+a_{2} r^{2}+a_{1} r+a_{0}
$$

Find constants using constraints on $c(\cdot)$

- Symmetry: $a_{3}=a_{1}=0$
- Postive definiteness: simulate by making $c(r) \rightarrow 0$ at $\partial \Omega$

$$
c(r)=\frac{1}{12}\left(2|r|^{3}-3 R r^{2}+R^{3}\right) .
$$

where R is the largest magnitude of r within Ω.

1D regression demonstration

GP predicts function values for set of points $\mathcal{U} \subseteq \Omega$

$$
P(f(\mathcal{U}) \mid \mathcal{X})=\operatorname{Normal}(f(\mathcal{U}) \mid \mu, Q)
$$

where

$$
\mu=C_{u x}^{\top}\left(C_{x x}+\sigma^{2} I\right)^{-1} t \quad \text { and } \quad Q=C_{u u}-C_{u x}^{\top}\left(C_{x x}+\sigma^{2} I\right)^{-1} C_{u x} .
$$

The matrices are formed by evaluating $c(\cdot, \cdot)$ between sets of points: i.e., $C_{x x}=\left[c\left(x_{i}, x_{j}\right)\right], C_{u x}=\left[c\left(u_{i}, x_{j}\right)\right]$, and $C_{u u}=\left[c\left(u_{i}, u_{j}\right)\right]$.

1D regression demonstration

Figure: Thin plate vs. squared exponential covariance. Mean (solid line) and 3 s.d. error bars (filled region) for GP regression (a) Thinplate covariance; (b) Squared exponential covariance function $c\left(u_{i}, u_{j}\right)=$ $e^{-\alpha\left\|u_{i}-u_{j}\right\|^{2}}$ with $\alpha=2,10$ and 100 ; error bars correspond to $\alpha=10$.

Covariance in 2D

- In 2D the Green's equation is

$$
\left(\nabla^{\top} \nabla\right)^{2} c(r)=\delta(r)
$$

where now $c(u, v)=c(r)$ with $r \triangleq\|u-v\|$.

Covariance in 2D

- In 2D the Green's equation is

$$
\left(\nabla^{\top} \nabla\right)^{2} c(r)=\delta(r)
$$

where now $c(u, v)=c(r)$ with $r \triangleq\|u-v\|$.

- Solution (with similar constraints at the boundary of Ω)

$$
c(r)=2 r^{2} \log |r|-(1+2 \log (R)) r^{2}+R^{2}
$$

Demonstration

- Set constraint points

$\mathcal{X}:\{\odot=0, \boldsymbol{\Delta}=+1, \boldsymbol{\nabla}=-1\}$

Demonstration

- Set constraint points
- Fit GP to points

$\mathcal{X}:\{\odot=0, \boldsymbol{\Delta}=+1, \mathbf{v}=-1\}$

Mean function

Probabilistic interpretation

Gaussian process makes probabilistic prediction:

Samples from posterior

Probabilistic interpretation

Gaussian process makes probabilistic prediction:

Samples from posterior

$$
P\left(x \in \mathcal{S}_{0}\right) \equiv P(f(x)=0) .
$$

With different topology

Result with squared exponential

Fitting 3D surfaces

In 3D the covariance is

$$
c(r)=2|r|^{3}+3 R r^{2}+R^{3}
$$

Fitting 3D surfaces

In 3D the covariance is

$$
c(r)=2|r|^{3}+3 R r^{2}+R^{3}
$$

- Take n points on surface of object

Fitting 3D surfaces

In 3D the covariance is

$$
c(r)=2|r|^{3}+3 R r^{2}+R^{3}
$$

- Take n points on surface of object
- Define internal and external points

Fitting 3D surfaces

In 3D the covariance is

$$
c(r)=2|r|^{3}+3 R r^{2}+R^{3}
$$

- Take n points on surface of object
- Define internal and external points
- Fit Gaussian process

Fitting 3D surfaces

In 3D the covariance is

$$
c(r)=2|r|^{3}+3 R r^{2}+R^{3}
$$

- Take n points on surface of object
- Define internal and external points
- Fit Gaussian process
- Use marching cubes algorithm to find mean surface

(a)

(b)

Figure: 3D surfaces. Mean surfaces $\mu(x)=0$ when $x \in \mathbb{R}^{3}$, rendered as an high resolution polygonal mesh generated by the marching cubes algorithm. (a) A simple "blob" defined by 15 points on the surface, one interior +1 point and 8 exterior -1 points arranged as a cube; (b) Two views of the Stanford bunny defined by 800 surface points, one interior +1 point, and a sphere of 80 exterior -1 points.

Summary

- Gaussian processes can be used to define curves and surfaces

Summary

- Gaussian processes can be used to define curves and surfaces
- Appropriate covariance must be used to obtain high quality results

Summary

- Gaussian processes can be used to define curves and surfaces
- Appropriate covariance must be used to obtain high quality results
- By using a GPIS, curves and surfaces have a meaningful probabilistic interpretation

Summary

- Gaussian processes can be used to define curves and surfaces
- Appropriate covariance must be used to obtain high quality results
- By using a GPIS, curves and surfaces have a meaningful probabilistic interpretation

Shortcomings / ideas for future work:

- Exploit probabilistic nature of GPIS in computer vision problems
- More elegant methods for constraining surface normals?
- Can this be used to learn a meaningful prior?
- Scale/smoothness control?

