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Implicit surface

Scalar function f (x) defins a surface wherever it passes through a
given value (e.g., 0)

S0 , {x ∈ Rd |f (x) = 0}.

Example: Function f (x) for x ∈ R2 defines a closed curve
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Fitting to data points

Our setting (Turk and O’Brien 1999):
I Given a set of constraint points in 2D or 3D {xi}, fit f (x)
I Have constraints at f (xi ) = 0 on the curve and at ±1 off it

e.g.,
I Simple interior/exterior case
I Control normals to curve
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x(t), y(t), [z(t)]

I What t to assign to data points?

I How to handle different topologies?

I Can represent non-closed
curves/surfaces
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Topology change
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Regularization

Find function passing through constraint points which minimizes
thin-plate spline energy

E (f ) =

∫
Ω

(
∇T∇f (x)

)2
dx

Fit f (x) with Gaussian process
Use covariance function equivalent to thin-plate spline
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Gaussian distribution

I Follow derivation in (MacKay 2003) in 1D

I consider the energy as a probability and define D as the linear
differential operator

E (f ) = − log P(f ) + const =

∫
Ω

(
D2f (x)

)2
dx .

I Use f (Ω) as vector of function values for all points in Ω:

− log P(f (Ω)) = f (Ω)T[D2]TD2f (Ω),

I This is a Gaussian disribution with mean zero and covariance:

C =
(
[D2]TD2

)−1
=

(
D4

)−1
.
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Covariance function

I Entries of C indexed by u, v ∈ Ω∫
Ω

D4(u,w)c(w , v) dw = δ(u − v) ⇒ ∂4

∂r4
c(r) = δ(r)

where we impose stationarity with r = u − v .

I Interpret as spectral density and solve

F
[
c(r)

]
(ω) = ω−4

⇒ c(r) = 1
6 |r |

3 + a3r
3 + a2r

2 + a1r + a0.
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Covariance function

c(r) = 1
6 |r |

3 + a3r
3 + a2r

2 + a1r + a0

Find constants using constraints on c(·)
I Symmetry: a3 = a1 = 0

I Postive definiteness: simulate by making c(r) → 0 at ∂Ω

c(r) = 1
12

(
2|r |3 − 3Rr2 + R3

)
.

where R is the largest magnitude of r within Ω.
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1D regression demonstration

GP predicts function values for set of points U ⊆ Ω

P(f (U)|X ) = Normal (f (U) | µ, Q)

where

µ = CT
ux(Cxx + σ2I )−1t and Q = Cuu − CT

ux(Cxx + σ2I )−1Cux .

The matrices are formed by evaluating c(·, ·) between sets of
points: i.e., Cxx = [c(xi , xj)], Cux = [c(ui , xj)], and
Cuu = [c(ui , uj)].
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1D regression demonstration
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(a) (b)

Figure: Thin plate vs. squared exponential covariance. Mean (solid

line) and 3 s.d. error bars (filled region) for GP regression (a) Thin-

plate covariance; (b) Squared exponential covariance function c(ui , uj) =

e−α‖ui−uj‖2

with α = 2, 10 and 100; error bars correspond to α = 10.
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Covariance in 2D

I In 2D the Green’s equation is(
∇T∇

)2
c(r) = δ(r)

where now c(u, v) = c(r) with r , ‖u − v‖.

I Solution (with similar constraints at the boundary of Ω)

c(r) = 2r2 log |r | −
(
1 + 2 log(R)

)
r2 + R2
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Demonstration

I Set constraint points

I
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Demonstration

I Set constraint points

I Fit GP to points
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Probabilistic interpretation

Gaussian process makes probabilistic prediction:
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With different topology
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Result with squared exponential
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Fitting 3D surfaces

In 3D the covariance is

c(r) = 2|r |3 + 3Rr2 + R3

I Take n points on surface of object

I Define internal and external points

I Fit Gaussian process

I Use marching cubes algorithm to find mean surface
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(a) (b)

Figure: 3D surfaces. Mean surfaces µ(x) = 0 when x ∈ R3, rendered

as an high resolution polygonal mesh generated by the marching cubes

algorithm. (a) A simple “blob” defined by 15 points on the surface, one

interior +1 point and 8 exterior -1 points arranged as a cube; (b) Two

views of the Stanford bunny defined by 800 surface points, one interior +1

point, and a sphere of 80 exterior -1 points.
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Summary

I Gaussian processes can be used to define curves and surfaces

I Appropriate covariance must be used to obtain high quality
results

I By using a GPIS, curves and surfaces have a meaningful
probabilistic interpretation

Shortcomings / ideas for future work:

I Exploit probabilistic nature of GPIS in computer vision
problems

I More elegant methods for constraining surface normals?

I Can this be used to learn a meaningful prior?

I Scale/smoothness control?
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