Jure Leskovec
Machine Learning Department
Carnegie Mellon University

Dynamics of large networks

Web: Rich data

- Today: Large on-line systems have detailed records of human activity
 - On-line communities:
 - Facebook (64 million users, billion dollar business)
 - MySpace (300 million users)
 - Communication:
 - Instant Messenger (~1 billion users)
 - News and Social media:
 - Blogging (250 million blogs world-wide, presidential candidates run blogs)
 - On-line worlds:
 - World of Warcraft (internal economy 1 billion USD)
 - Second Life (GDP of 700 million USD in '07)

Can study phenomena and behaviors at scales that before were never possible

Rich data: Networks

Networks: What do we know?

- We know lots about the network structure:
 - Properties: Scale free [Barabasi '99], Clustering [Watts-Strogatz '98], Navigation [Adamic-Adar '03, LibenNowell '05] Ripartite cores [Kumar et al '99] Network motifs
 We know much less about processes
 and dynamics of networks
 - Models: Preferential attachment [Barabasi '99], Smallworld [Watts-Strogatz '98], Copying model [Kleinberg el al. '99], Heuristically optimized tradeoffs [Fabrikant et al. '02], Congestion [Mihail et al. '03], Searchability [Kleinberg '00], Bowtie [Broder et al. '00], Transit-stub [Zegura '97], Jellyfish [Tauro et al. '01]

This thesis: Network dynamics

- Network evolution
 - How network structure changes as the network grows and evolves?
- Diffusion and cascading behavior
 - How do rumors and diseases spread over networks?
- Large data
 - Observe phenomena that is "invisible" at smaller scales

Data size matters

- We need massive network data for the patterns to emerge
 - MSN Messenger network [www '08]
 (the largest social network ever analyzed)
 - 240M people, 255B messages, 4.5 TB data
 - Product recommendations [EC '06]
 - 4M people, 16M recommendations
 - Blogosphere [in progress]
 - 164M posts, 127M links

This thesis: The structure

	Network Evolution	Network Cascades	Large Data
Observations	Q1: How does network structure evolve over time?	Q4: What are patterns of diffusion in networks?	Q7: What are the properties of a social network of the whole planet?
Models	Q2: How to model individual edge attachment?	Q5: How do we model influence propagation?	Q8: What is community structure of large networks?
Algorithms (applications)	Q3: How to generate realistic looking networks?	Q6: How to identify influential nodes and epidemics?	Q9: How to predict search result quality from the web graph?

This thesis: The structure

	Network Evolution	Network Cascades	Large Data
Observations	Q1: How does network structure evolve over time?	Q4: What are patterns of diffusion in networks?	Q7: What are the properties of a social network of the whole planet?
Models	Q2: How to model individual edge attachment?	Q5: How do we model influence propagation?	Q8: What is community structure of large networks?
Algorithms (applications)	Q3: How to generate realistic looking networks?	Q6: How to identify influential nodes and epidemics?	Q9: How to predict search result quality from the web graph?

Background: Network models

 Empirical findings on real graphs led to new network models

- Such models make assumptions/predictions about other network properties
- What about network evolution?

Q1) Network evolution

- What is the relation between the number of nodes and the edges over time?
- Prior work assumes constant average degree over time
- Networks are denser over time
- Densification Power Law:

$$E(t) \propto N(t)^a$$

 α ... densification exponent $(1 \le a \le 2)$

Q1) Network evolution

that the network diametric slowly grows (like log N, loog N)

 as the <u>network grows</u> the distances between the nodes slowly decrease

Q2) Modeling edge attachment

 We directly observe atomic events of network evolution (and not only network snapshots)

We can model evolution at finest scale

- Test individual edge attachment
 - Directly observe events leading to network properties
- Compare network models by likelihood (and not by just summary network statistics)

Setting: Edge-by-edge evolution

- Network datasets
 - Full temporal information from the first edge onwards
 - LinkedIn (N=7m, E=30m), <u>Flickr</u> (N=600k, E=3m),
 Delicious (N=200k, E=430k), Answers (N=600k, E=2m)
- We model 3 processes governing the evolution
 - P1) Node arrival: node enters the network
 - P2) Edge initiation: node wakes up, initiates an edge, goes to sleep
 - P3) Edge destination: where to attach a new edge
 - Are edges more likely to attach to high degree nodes?
 - Are edges more likely to attach to nodes that are close?

Edge attachment degree bias

Are edges more likely to connect to higher degree nodes?

10	/ 1_\		1 _ T
D	(K)	∞	K
$\boldsymbol{\Gamma}$	\ '''/		- •

Network	τ	
G_{np}	0	
PA	1	
Flickr	1	
Delicious	1	
Answers	0.9	
LinkedIn	0.6	

But, edges also attach locally

Just before the edge (u,w) is placed how many hops is between u and w?

Fraction of triad closing edges		
Network	%Δ	
Flickr	66%	
Delicious	28%	
Answers	23%	
LinkedIn	50%	
U	W	

How to best close a triangle?

- New triad-closing edge (u,w) appears next
- We model this as:
 - u chooses neighbor v
 - 2. v chooses neighbor w
 - 3. Connect (u,w)
 - We consider 25 triad closing strategies
 - and compute their log-likelihood
- Triad closing is best explained by
 - choosing a node based on the number of common friends and time since last activity
 - (just choosing random neighbor also works well)

Q3) Generating realistic graphs

Problem: generate a realistic looking synthetic network

- Why synthetic graphs?
 - Anomaly detection, Simulations, Predictions, Null-model,
 Sharing privacy sensitive graphs, ...
- Q: Which network properties do we care about?
- Q: What is a good model and how do we fit it?

Q3) The model: Kronecker graphs

Kronecker product of graph adjacency matrices

- We prove Kronecker graphs mimic real graphs:
 - Power-law degree distribution, Densification,
 Shrinking/stabilizing diameter, Spectral properties

Q5) Kronecker graphs: Estimation

Maximum likelihood estimation

- Naïve estimation takes O(N!N²):
 - N! for different node labelings:
 - Our solution: Metropolis sampling: $N! \rightarrow (big)$ const
 - N² for traversing graph adjacency matrix
 - Our solution: Kronecker product $(E << N^2)$: $N^2 \rightarrow E$
- Do stochastic gradient descent

We estimate the model in O(E)

Estimation: Epinions (N=76k, E=510k)

We search the space of ~10^{1,000,000} permutations

 $\hat{\Theta} = \frac{0.99 | 0.54}{0.49 | 0.13}$

- Fitting takes 2 hours
- Real and Kronecker are very close

Thesis: The structure

	Network Evolution	Network Cascades	Large Data
Observations	Q1: How does network structure evolve over time?	Q4: What are patterns of diffusion in networks?	Q7: What are the properties of a social network of the whole planet?
Models	Q2: How to model individual edge attachment?	Q5: How do we model influence propagation?	Q8: What is community structure of large networks?
Algorithms (applications)	Q3: How to generate realistic looking networks?	Q6: How to identify influential nodes and epidemics?	Q9: How to predict search result quality from the web graph?

Thesis: The structure

	Network Evolution	Network Cascades	Large Data
Observations	Q1: How does network structure evolve over time?	Q4: What are patterns of diffusion in networks?	Q7: What are the properties of a social network of the whole planet?
Models	Q2: How to model individual edge attachment?	Q5: How can we model influence propagation?	Q8: What is community structure of large networks?
Algorithms (applications)	Q3: How to generate realistic looking networks?	Q6: How to identify influential nodes and epidemics?	Q9: How to predict search result quality from the web graph?

Part 2: Diffusion and Cascades

- Behavior that cascades from node to node
 like an epidemic
 We observe cascading
 - News, opinions, rumors
 - Word-of-mouth in marketing
 - Infectious diseases
- As activations spread through the network they leave a trace – a cascade

behavior in large

networks

Setting 1: Viral marketing

 People send and receive product recommendations, purchase products

<u>Data:</u> Large online retailer: 4 million people,
 16 million recommendations, 500k products

Setting 2: Blogosphere

 Bloggers write posts and refer (link) to other posts and the information propagates

Data: 10.5 million posts, 16 million links

Q4) What do cascades look like?

Are they stars? Chains? Trees?

- Viral marketing cascades are more social:
 - Collisions (no summarizers)
 - Richer non-tree structures

Q5) Human adoption curves

- Prob. of adoption depends on the number of friends who have adopted [Bass '69, Granovetter '78]
- What is the shape?

k = number of friends adopting

Diminishing returns?

k = number of friends adopting

Critical mass?

Q₅) Adoption curve: Validation

Adoption curve follows the diminishing returns.

Q6) Cascade & outbreak detection

- Blogs information epidemics
 - Which are the influential/infectious blogs?
- Viral marketing
 - Who are the trendsetters?
 - Influential people?
- Disease spreading
 - Where to place monitoring stations to detect epidemics?

Q6) The problem: Detecting cascades

How to quickly detect epidemics as they spread?

Two parts to the problem

Cost:

 Cost of monitoring is node dependent

Reward:

- Minimize the number of affected nodes:
 - If A are the monitored nodes, let R(A) denote the number of nodes we save

We also consider other rewards:

- Minimize time to detection
- Maximize number of detected outbreaks

Optimization problem

- Given:
 - Graph G(V,E), budget M
 - Data on how cascades $C_1, ..., C_i, ..., C_K$ spread over time
- Select a set of nodes A maximizing the reward

$$\max_{A\subseteq V} \underbrace{\sum_{i} \operatorname{Prob}(i) R_i(A)}_{\text{Reward for detecting cascade } i}$$
 subject to $cost(A) \leq M$

- Solving the problem exactly is NP-hard
 - Max-cover [Khuller et al. '99]

Solution: CELF Algorithm

- We develop CELF (cost-effective lazy forward-selection) algorithm:
 - Two independent runs of a modified greedy
 - Solution set A': ignore cost, greedily optimize reward
 - Solution set A": greedily optimize reward/cost ratio
 - Pick best of the two: $arg\ max(R(A'), R(A''))$
- Theorem: If R is submodular then CELF is near optimal
 - CELF achieves $\frac{1}{2}(1-1/e)$ factor approximation

Problem structure: Submodularity

New monitored node:

Placement $B=\{S_1, S_2, S_3, S_4\}$

Theorem: Reward function R is submodular (diminishing returns, think of it as "concavity")

$$R(A \cup \{u\}) - R(A) \geq R(B \cup \{u\}) - R(B)$$

Gain of adding a node to a small set

Gain of adding a node to a large set

Blogs: Information epidemics

- Question: Which blogs should one read to catch big stories?
- Idea: Each blog covers part of the blogosphere

- Each dot is a blog
- Proximity is based on the number of common cascades

Blogs: Information epidemics

Which blogs should one read to catch big stories?

For more info see our website: www.blogcascade.org

CELF: Scalability

Same problem: Water Network

Given:

- a real city water distribution network
- data on how contaminants spread over time
- Place sensors (to save lives)
- Problem posed by the US Environmental Protection Agency

Water network: Results

 Our approach performed best at the Battle of Water Sensor Networks competition

Author	Score
CMU (CELF)	26
Sandia	21
U Exter	20
Bentley systems	19
Technion (1)	14
Bordeaux	12
U Cyprus	11
U Guelph	7
U Michigan	4
Michigan Tech U	3
Malcolm	2
Proteo	2
Technion (2)	1

Thesis: The structure

	Network Evolution	Network Cascades	Large Data
Observations	Q1: How does network structure evolve over time?	Q4: What are patterns of diffusion in networks?	Q7: What are the properties of a social network of the whole planet?
Models	Q2: How to model individual edge attachment?	Q5: How do we model influence propagation?	Q8: What is community structure of large networks?
Algorithms (applications)	Q3: How to generate realistic looking networks?	Q6: How to identify influential nodes and epidemics?	Q9: How to predict search result quality from the web graph?

Thesis: The structure

	Network Evolution	Network Cascades	Large Data
Observations	Q1: How does network structure evolve over time?	Q4: What are patterns of diffusion in networks?	Q7: What are the properties of a social network of the whole planet?
Models	Q2: How to model individual edge attachment?	Q5: How do we model influence propagation?	Q8: What is community structure of large networks?
Algorithms (applications)	Q3: How to generate realistic looking networks?	Q6: How to identify influential nodes and epidemics?	Q9: How to predict search result quality from the web graph?

3 case studies on large data

Benefits from working with large data:

- Q7) Can test hypothesis at planetary scale
 - 6 degrees of separation
- Q8) Observe phenomena previously invisible
 - Network community structure
- Q9) Making global predictions from local network structure
 - Web search

Q7) Planetary look on a small-world

- Small-world experiment [Milgram '67]
 - People send letters from Nebraska to Boston
- How many steps does it take?
- Messenger social network largest network analyzed
 - 240M people, 255B messages, 4.5TB data

Q8) Network community structure

- How community like is a set of nodes?
- Need a natural intuitive measure

Conductance:

 $\Phi(S) = \# \text{ edges cut } / \# \text{ edges inside}$

Plot: Score of best cut of volume k=|S|

Example: Small network

Collaborations between scientists (N=397, E=914)

Example: Large network

Collaboration network (N=4,158, E=13,422)

Q8) Suggested network structure

Q8) Suggested network structure

Q9) Web Projections

- User types in a query to a search engine
- Search engine returns results:

Is this a good set of search results?

Q9) Web Projections: Results

 We can predict search result quality with 80% accuracy just from the connection patterns between the results

Thesis: The structure

	Network Evolution	Network Cascades	Large Data
Observations	Densification and shrinking diameter	Cascade shapes	7 degrees of separation of MSN
Models	Triangle closing model	Diminishing returns of human adoption	Network community structure
Algorithms (applications)	Kronecker graphs and fitting	Cascade and outbreak detection	Web projections

Future directions: Evolution

- Why are networks the way they are?
- Health of a social network
 - Steer the network evolution
 - Better design networked services
- Predictive modeling of large communities
 - Online massively multi-player games are closed worlds with detailed traces of activity

Future directions: Diffusion

- Predictive models of information diffusion
 - When, where and what post will create a cascade?
 - Where should one tap the network to get the effect they want?
 - Social Media Marketing

- New ranking and influence measures for blogs
- Sentiment analysis from cascade structure

What's next?

Observations: Data analysis

Actively influencing the network

Models: Predictions

Algorithms: Applications