Toward Joint Segmentation and Classification of Dialog Acts in Multiparty Meetings

MLMI'05, July 11-13th

Matthias Zimmermann, Yang Liu, Elizabeth Shriberg, and Andreas Stolcke

{zimmerma,yang,ees,stolcke}@icsi.berkeley.edu

International Computer Science Institute, Berkeley, USA

Organization

- 1. Problem Statement
- 2. Hidden-Event LM and Tagger
- 3. Performance Metrics
- 4. Experiments and Results
- 5. Conclusions and Outlook

Segmentation of a multiparty meeting into its Dialog Acts (DAs)

Input: well u- that's pretty good i think yeah thanks Transcript: $[_D \text{ well}] [_S \text{ u- that's pretty good i think}] [_S \text{ yeah}] [_S \text{ thanks}]$

Segmentation of a multiparty meeting into its Dialog Acts (DAs)

Input:well u- that's pretty good i think yeah thanksTranscript: $[_D well] [_S u-$ that's pretty good i think] $[_S yeah] [_S thanks]$ System: $[_S well u-$ that's pretty good] $[_D i think] [_B yeah] [_S thanks]$

Previous work

- typically either segmentation or classification of DAs
- fully automatic systems require solutions to both

Previous work

- typically either segmentation or classification of DAs
- fully automatic systems require solutions to both

1997, Warnke et al.

- Verbmobil
- integrated segmentation and classification

Previous work

- typically either segmentation or classification of DAs
- fully automatic systems require solutions to both

1997, Warnke et al.

- Verbmobil
- integrated segmentation and classification

2005, Ang et al. (ICASSP'05)

- ICSI meeting corpus
- sequential approach
- segmentation into DAs: hidden event LM, and decision trees
- classification of DAs: maximum entropy, and decision trees

Motivation

- remove the limitation of the sequential approach
- start with experimental setup of Ang et al. (ICASSP'05)
- move toward the integrated approach of Warnke et al.

Motivation

- remove the limitation of the sequential approach
- start with experimental setup of Ang et al. (ICASSP'05)
- move toward the integrated approach of Warnke et al.

This Work

- extends the hidden event LM based segmenation of ICASSP'05 to integrated segmentation and classification of DAs
- investigate a second technique based on a tagger approach
- proposes new DA based error metrics
- comparison with previous results

Hidden Event LM (HE-LM)

- N-gram modeling for a stream of words including hidden events
- hidden events typically correspond to sentence boundaries

Hidden Event LM (HE-LM)

- N-gram modeling for a stream of words including hidden events
- hidden events typically correspond to sentence boundaries
- in our case tagged DA boundaries act as events

Hidden Event LM (HE-LM)

- N-gram modeling for a stream of words including hidden events
- hidden events typically correspond to sentence boundaries
- in our case tagged DA boundaries act as events

Training: well <d> u- that's pretty good i think <s> yeah thanks <s>

Hidden Event LM (HE-LM)

- N-gram modeling for a stream of words including hidden events
- hidden events typically correspond to sentence boundaries
- in our case tagged DA boundaries act as events

Training: well <d> u- that's pretty good i think <s> yeah thanks <s> Testing: well u- that's pretty good i think yeah thanks

Hidden Event LM (HE-LM)

- N-gram modeling for a stream of words including hidden events
- hidden events typically correspond to sentence boundaries
- in our case tagged DA boundaries act as events

Training: well <d> u- that's pretty good i think <s> yeah thanks <s> Testing: well u- that's pretty good i think yeah thanks $p(<b|pretty), p(<d|pretty), \dots p(<>|pretty)$

• after each word the event with the highest posterior is inserted

Hidden Event LM (HE-LM)

- N-gram modeling for a stream of words including hidden events
- hidden events typically correspond to sentence boundaries
- in our case tagged DA boundaries act as events

Training: well <d> u- that's pretty good i think <s> yeah thanks <s> Testing: well u- that's pretty good i think yeah thanks $p(|pretty), p(<d>|pretty), \dots p(<>|pretty)$

- after each word the event with the highest posterior is inserted
- Result: well<> u- <> that's <> pretty <> good <s> i <> think <d> yeah thanks <s>

- translation of a stream of words from vocabulary V into words from a (tagged) vocabulary V_T
- system tries to find V_T sequence with the highest posterior given:

- translation of a stream of words from vocabulary V into words from a (tagged) vocabulary V_T
- system tries to find V_T sequence with the highest posterior given:
 - sequence of words in V

- translation of a stream of words from vocabulary V into words from a (tagged) vocabulary V_T
- system tries to find V_T sequence with the highest posterior given:
 - sequence of words in V
 - mapping probabilities from words in V to words in V_T

- translation of a stream of words from vocabulary V into words from a (tagged) vocabulary V_T
- system tries to find V_T sequence with the highest posterior given:
 - sequence of words in V
 - mapping probabilities from words in V to words in V_T
 - N-gram LM for sequence of words in V_T

- translation of a stream of words from vocabulary V into words from a (tagged) vocabulary V_T
- system tries to find V_T sequence with the highest posterior given:
 - sequence of words in V
 - mapping probabilities from words in V to words in V_T
 - N-gram LM for sequence of words in V_T

Input in V	well u- that's pretty good i think yeah thanks
Mapping	$p(\text{yeah} \text{yeah}_{b+})$, $p(\text{yeah} \text{yeah}_b)$, $p(\text{yeah} \text{yeah}_{d+})$,
LM in V_T	$p(yeah_{s+} i_{d+}, think_d)$

Tagger

- translation of a stream of words from vocabulary V into words from a (tagged) vocabulary V_T
- system tries to find V_T sequence with the highest posterior given:
 - sequence of words in V
 - mapping probabilities from words in V to words in V_T
 - N-gram LM for sequence of words in V_T
- Input in Vwell u- that's pretty good i think yeah thanksMapping $p(yeah|yeah_{b+}), p(yeah|yeah_b), p(yeah|yeah_{d+}), \dots$ LM in V_T $p(yeah_{s+}|i_{d+}, think_d)$

Result in V_T well_{s+} u-_s that's_s pretty_s good_s i_{d+} think_d yeah_{s+} thanks_s

Previous Metrics

- boundary based: NIST-SU metrics
- word based: Lenient, and Strict metrics (ICASSP'05)

Previous Metrics

- boundary based: NIST-SU metrics
- word based: Lenient, and Strict metrics (ICASSP'05)

Proposed Metrics: DA Based

• simple to interpret, directly related to DAs

Previous Metrics

- boundary based: NIST-SU metrics
- word based: Lenient, and Strict metrics (ICASSP'05)

Proposed Metrics: DA Based

- simple to interpret, directly related to DAs
- counting units are the DAs as in transcripts

Previous Metrics

- boundary based: NIST-SU metrics
- word based: Lenient, and Strict metrics (ICASSP'05)

Proposed Metrics: DA Based

- simple to interpret, directly related to DAs
- counting units are the DAs as in transcripts
- percentage of wrongly segmented DAs: Dialog act Segmentation Error Rate (DSER)

Previous Metrics

- boundary based: NIST-SU metrics
- word based: Lenient, and Strict metrics (ICASSP'05)

Proposed Metrics: DA Based

- simple to interpret, directly related to DAs
- counting units are the DAs as in transcripts
- percentage of wrongly segmented DAs: Dialog act Segmentation Error Rate (DSER)
- percentage of wrongly segmented or classified DAs: Dialog act Error Rate (DER)

Metrics for Segmentation Errors

• NIST-SU, boundary based

$$NIST - SU = \frac{Misses + FA}{Boundaries} \times 100\%$$

Metrics for Segmentation Errors

• NIST-SU, boundary based

$$NIST - SU = \frac{Misses + FA}{Boundaries} \times 100\%$$

• Da Segmentation Error Rate (DSER), DA based

$$DER = \frac{missegmented \ DAs}{DAs} \times 100\%$$

Reference	S Q.Q.Q.Q	S.S	.S	В	S.	S
System	S Q S Q.Q	D.D	.D	S.	s.	S

Reference	S	Q.Q.Q	.Q S	.S.S	8 B	S.S	
System	S	Q S Q	.Q D	.D.D	S.	S.S	
NIST-SU	С	ΕE	С		СE	(7
DSER	C	E		С	E	Ε	

	Reference	S Q.	Q.Q.	.Q S	.s.	SBSS	S.S	
	System	SQ	S Q.	. Q D	.D.	D S.S	S.S	
	NIST-SU	CE	ΕE	С		CΕ	С	
	DSER	C	Е		С	E	Е	
tric	Errors		Re	efere	nce	Units	Erro	r Rate

Metric	Errors	Reference Units	Error Rate
NIST-SU	2 FA, 1 miss	5 boundaries	60%
DSER	3 match errors	5 DAs	60%

Metrics for Segmentation and Classification errors

• NIST-SU, boundary based

$$NIST - SU = \frac{Substitutions + Misses + FA}{Boundaries} \times 100\%$$

Metrics for Segmentation and Classification errors

• NIST-SU, boundary based

$$NIST - SU = \frac{Substitutions + Misses + FA}{Boundaries} \times 100\%$$

• Lenient, word based (does not consider segmentation)

$$Lenient = \frac{mistagged \ Words}{Words} \times 100\%$$

• Strict, word based

$$Strict = \frac{mistagged \ or \ missegmented \ Words}{Words} \times 100\%$$

• Strict, word based

$$Strict = rac{mistagged \ or \ missegmented \ Words}{Words} imes 100\%$$

• DA Error Rate (DER), DA based

$$DER = \frac{DAs \ containing \ errors}{DAs} \times 100\%$$

Reference	S Q.Q.Q.Q S.S.S B S.S
System	S Q S Q.Q D.D.D S.S.S
Segmentation and Classification Metrics

Examples

Reference	S Q.Q.Q.Q S	S.S.S B S.S
System	S Q S Q.Q I	D.D.D S.S.S
NIST-SU	CEEC	E E C
Lenient	ССЕССЕ	EEECC
Strict	СЕЕЕЕ	EEEEE
DER	C E	E E E

Segmentation and Classification Metrics

Examples

Reference	S	Q.	. Q .	. Q .	Q	S	. S .	S	В	S	.S	ĺ
System	S	Q	S	Q.	Q	D.	. D .	D	S.	. S	.S	
NIST-SU	C	C E	E E	C	C			E	E E	2	C	7
Lenient	С	С	Ε	С	С	Ε	Ε	Ε	Ε	С	С	
Strict	С	Ε	Ε	Ε	Ε	Ε	Ε	Ε	Ε	Ε	Ε	
DER	C		E	C			Ε		Ε	E	3	

Metric	Errors	Reference Units	Error Rate
NIST-SU	1 sub., 2 FA, 1 miss	5 boundaries	80%
Lenient	5 match errors	11 words	45%
Strict	10 match errors	11 words	91%
DER	4 match errors	5 DAs	80%

Experimental Setup

ICSI meeting corpus with DA annotations (MRDA)

- as in Ang et al. (ICASSP'05)
- 51 meetings for training, 11 for validation, and 11 for testing
- 2 conditions: reference text, and STT* output
- 5 DA types[†]
- *: average WER: 39%, 32% for native speaker
- [†]: B=Backchannel, D=Disruption, F=Floor grabber, Q=Question, S=Statement

Condition	System	NIST-SU	DSER
	ICASSP'05	34.5	40.8
	ICASSP'05*	46.0	53.0
Ref			

STT

Condition	System	NIST-SU	DSER
	ICASSP'05	34.5	40.8
	ICASSP'05*	46.0	53.0
Ref	HE-LM	46.3	55.3

STT

Condition	System	NIST-SU	DSER
	ICASSP'05	34.5	40.8
	ICASSP'05*	46.0	53.0
Ref	HE-LM	46.3	55.3
	Tagger	51.1	61.7

STT

Condition	System	NIST-SU	DSER
	ICASSP'05	34.5	40.8
	ICASSP'05*	46.0	53.0
Ref	HE-LM	46.3	55.3
	Tagger	51.1	61.7
	ICASSP'05	45.5	49.4
	ICASSP'05*	59.5	62.0
STT			

Condition	System	NIST-SU	DSER
	ICASSP'05	34.5	40.8
	ICASSP'05*	46.0	53.0
Ref	HE-LM	46.3	55.3
	Tagger	51.1	61.7
	ICASSP'05	45.5	49.4
	ICASSP'05*	59.5	62.0
STT	HE-LM	59.6	62.4

Condition	System	NIST-SU	DSER
	ICASSP'05	34.5	40.8
	ICASSP'05*	46.0	53.0
Ref	HE-LM	46.3	55.3
	Tagger	51.1	61.7
	ICASSP'05	45.5	49.4
	ICASSP'05*	59.5	62.0
STT	HE-LM	59.6	62.4
	Tagger	62.8	66.9
_			

Condition	System	NIST-SU	Lenient	Strict	DER
	ICASSP'05	52.6	20.0	64.4	54.4
	ICASSP'05*	62.3	21.0	72.4	64.1
Ref					

STT

Condition	System	NIST-SU	Lenient	Strict	DER
	ICASSP'05	52.6	20.0	64.4	54.4
	ICASSP'05*	62.3	21.0	72.4	64.1
Ref	HE-LM	62.2	23.3	74.3	66.5

STT

Condition	System	NIST-SU	Lenient	Strict	DER
	ICASSP'05	52.6	20.0	64.4	54.4
	ICASSP'05*	62.3	21.0	72.4	64.1
Ref	HE-LM	62.2	23.3	74.3	66.5
	Tagger	69.5	22.6	78.6	72.6

STT

Condition	System	NIST-SU	Lenient	Strict	DER
	ICASSP'05	52.6	20.0	64.4	54.4
	ICASSP'05*	62.3	21.0	72.4	64.1
Ref	HE-LM	62.2	23.3	74.3	66.5
	Tagger	69.5	22.6	78.6	72.6
	ICASSP'05	68.3	25.1	75.4	64.3
	ICASSP'05*	78.3	25.0	82.9	73.2
STT					

Condition	System	NIST-SU	Lenient	Strict	DER
	ICASSP'05	52.6	20.0	64.4	54.4
	ICASSP'05*	62.3	21.0	72.4	64.1
Ref	HE-LM	62.2	23.3	74.3	66.5
	Tagger	69.5	22.6	78.6	72.6
	ICASSP'05	68.3	25.1	75.4	64.3
	ICASSP'05*	78.3	25.0	82.9	73.2
STT	HE-LM	78.0	26.2	83.8	73.9

Condition	System	NIST-SU	Lenient	Strict	DER
	ICASSP'05	52.6	20.0	64.4	54.4
	ICASSP'05*	62.3	21.0	72.4	64.1
Ref	HE-LM	62.2	23.3	74.3	66.5
	Tagger	69.5	22.6	78.6	72.6
	ICASSP'05	68.3	25.1	75.4	64.3
	ICASSP'05*	78.3	25.0	82.9	73.2
STT	HE-LM	78.0	26.2	83.8	73.9
	Tagger	81.3	22.4	85.4	77.3

Main Conclusions

• investigated HE-LM and Tagger based approaches

- investigated HE-LM and Tagger based approaches
- established baseline for joint segmentation and classification

- investigated HE-LM and Tagger based approaches
- established baseline for joint segmentation and classification
- promising first results given the simplicity of the approach

- investigated HE-LM and Tagger based approaches
- established baseline for joint segmentation and classification
- promising first results given the simplicity of the approach
- proposed and motivated DA based DSER and DER metrics

Future Directions

Future Directions

• A* algorithm to take into account complete DA hypotheses

Future Directions

- A* algorithm to take into account complete DA hypotheses
- integrate both word and prosody based information

Future Directions

- A* algorithm to take into account complete DA hypotheses
- integrate both word and prosody based information
- use of word lattices produced by STT

Thank You

Condition	System	NIST-SU	DSER
	ICASSP'05	34.5	40.8
	ICASSP'05*	46.0	53.0
Ref			

STT

Condition	System	NIST-SU	DSER
	ICASSP'05	34.5	40.8
	ICASSP'05*	46.0	53.0
Ref	HE-LM	46.3	55.3

STT

Condition	System	NIST-SU	DSER
	ICASSP'05	34.5	40.8
	ICASSP'05*	46.0	53.0
Ref	HE-LM	46.3	55.3
	A*	63.3	47.1

STT

Condition	System	NIST-SU	DSER
	ICASSP'05	34.5	40.8
	ICASSP'05*	46.0	53.0
Ref	HE-LM	46.3	55.3
	A *	63.3	47.1
	A^*_{DA}	51.0	48.9

STT

ICASSP'05* without prosody features

 A^*_{DA} including DA bigram LM

Condition	System	NIST-SU	DSER
	ICASSP'05	34.5	40.8
	ICASSP'05*	46.0	53.0
Ref	HE-LM	46.3	55.3
	A*	63.3	47.1
	A^*_{DA}	51.0	48.9
	ICASSP'05	45.5	49.4
	ICASSP'05*	59.5	62.0
STT			

Condition	System	NIST-SU	DSER
	ICASSP'05	34.5	40.8
	ICASSP'05*	46.0	53.0
Ref	HE-LM	46.3	55.3
	A*	63.3	47.1
	A^*_{DA}	51.0	48.9
	ICASSP'05	45.5	49.4
	ICASSP'05*	59.5	62.0
STT	HE-LM	59.6	62.4

ICASSP'05* without prosody features

 A^*_{DA} including DA bigram LM

Condition	System	NIST-SU	DSER
	ICASSP'05	34.5	40.8
	ICASSP'05*	46.0	53.0
Ref	HE-LM	46.3	55.3
	A*	63.3	47.1
	A^*_{DA}	51.0	48.9
	ICASSP'05	45.5	49.4
	ICASSP'05*	59.5	62.0
STT	HE-LM	59.6	62.4
	A *	81.8	55.1

ICASSP'05* without prosody features

 A^*_{DA} including DA bigram LM

Condition	System	NIST-SU	DSER
	ICASSP'05	34.5	40.8
	ICASSP'05*	46.0	53.0
Ref	HE-LM	46.3	55.3
	A *	63.3	47.1
	A^*_{DA}	51.0	48.9
	ICASSP'05	45.5	49.4
	ICASSP'05*	59.5	62.0
STT	HE-LM	59.6	62.4
	A *	81.8	55.1
	A^*_{DA}	71.1	55.8

ICASSP'05* without prosody features

 A^*_{DA} including DA bigram LM

Condition	System	NIST-SU	Lenient	Strict	DER
	ICASSP'05	52.6	20.0	64.4	54.4
	ICASSP'05*	62.3	21.0	72.4	64.1
Ref					

STT

Condition	System	NIST-SU	Lenient	Strict	DER
	ICASSP'05	52.6	20.0	64.4	54.4
	ICASSP'05*	62.3	21.0	72.4	64.1
Ref	HE-LM	62.2	23.3	74.3	66.5

STT

Condition	System	NIST-SU	Lenient	Strict	DER
	ICASSP'05	52.6	20.0	64.4	54.4
Ref	ICASSP'05*	62.3	21.0	72.4	64.1
	HE-LM	62.2	23.3	74.3	66.5
	A *	90.1	28.7	76.5	63.2

STT
Condition	System	NIST-SU	Lenient	Strict	DER
	ICASSP'05	52.6	20.0	64.4	54.4
Ref	ICASSP'05*	62.3	21.0	72.4	64.1
	HE-LM	62.2	23.3	74.3	66.5
	A*	90.1	28.7	76.5	63.2
	A^*_{DA}	72.0	24.7	73.2	62.3

STT

ICASSP'05* without prosody features

Condition	System	NIST-SU	Lenient	Strict	DER
Ref	ICASSP'05	52.6	20.0	64.4	54.4
	ICASSP'05*	62.3	21.0	72.4	64.1
	HE-LM	62.2	23.3	74.3	66.5
	A*	90.1	28.7	76.5	63.2
	A^*_{DA}	72.0	24.7	73.2	62.3
	ICASSP'05	68.3	25.1	75.4	64.3
	ICASSP'05*	78.3	25.0	82.9	73.2
STT					

ICASSP'05* without prosody features

Condition	System	NIST-SU	Lenient	Strict	DER
Ref	ICASSP'05	52.6	20.0	64.4	54.4
	ICASSP'05*	62.3	21.0	72.4	64.1
	HE-LM	62.2	23.3	74.3	66.5
	A *	90.1	28.7	76.5	63.2
	A^*_{DA}	72.0	24.7	73.2	62.3
	ICASSP'05	68.3	25.1	75.4	64.3
	ICASSP'05*	78.3	25.0	82.9	73.2
STT	HE-LM	78.0	26.2	83.8	73.9

ICASSP'05* without prosody features

Condition	System	NIST-SU	Lenient	Strict	DER
	ICASSP'05	52.6	20.0	64.4	54.4
	ICASSP'05*	62.3	21.0	72.4	64.1
Ref	HE-LM	62.2	23.3	74.3	66.5
	A*	90.1	28.7	76.5	63.2
	A^*_{DA}	72.0	24.7	73.2	62.3
	ICASSP'05	68.3	25.1	75.4	64.3
	ICASSP'05*	78.3	25.0	82.9	73.2
STT	HE-LM	78.0	26.2	83.8	73.9
	A*	114.0	35.5	85.6	72.4

ICASSP'05* without prosody features

Condition	System	NIST-SU	Lenient	Strict	DER
Ref	ICASSP'05	52.6	20.0	64.4	54.4
	ICASSP'05*	62.3	21.0	72.4	64.1
	HE-LM	62.2	23.3	74.3	66.5
	A *	90.1	28.7	76.5	63.2
	A^*_{DA}	72.0	24.7	73.2	62.3
STT	ICASSP'05	68.3	25.1	75.4	64.3
	ICASSP'05*	78.3	25.0	82.9	73.2
	HE-LM	78.0	26.2	83.8	73.9
	A*	114.0	35.5	85.6	72.4
	A^*_{DA}	98.4	31.5	83.9	71.4

ICASSP'05* without prosody features