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Problem Statement

Segmentation of a multiparty meeting into its Dialog Acts (DAs)

Input: well u- that’s pretty good i think yeah thanks
Transcript: [Dwell ℄ [S u- that’s pretty good i think ℄ [S yeah ℄ [S thanks ℄

[S ℄ [D ℄ [B ℄ [S ℄
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Transcript: [Dwell ℄ [S u- that’s pretty good i think ℄ [S yeah ℄ [S thanks ℄

System: [S well u- that’s pretty good ℄ [D i think ℄ [B yeah ℄ [S thanks ℄

Matthias Zimmermann et al. 06/19/2005 – p. 3/21



Problem Statement

Previous work� typically either segmentation or classification of DAs� fully automatic systems require solutions to both
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Problem Statement

Previous work� typically either segmentation or classification of DAs� fully automatic systems require solutions to both

1997, Warnke et al.� Verbmobil� integrated segmentation and classification

2005, Ang et al. (ICASSP’05)� ICSI meeting corpus� sequential approach� segmentation into DAs: hidden event LM, and decision trees� classification of DAs: maximum entropy, and decision trees
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Problem Statement

Motivation� remove the limitation of the sequential approach� start with experimental setup of Ang et al. (ICASSP’05)� move toward the integrated approach of Warnke et al.

This Work� extends the hidden event LM based segmenation of ICASSP’05 to
integrated segmentation and classification of DAs� investigate a second technique based on a tagger approach� proposes new DA based error metrics� comparison with previous results
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Hidden Event Language Model

Hidden Event LM (HE-LM)� N-gram modeling for a stream of words including hidden events� hidden events typically correspond to sentence boundaries

�
p( j ); p( j ); : : : p( j )�
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Hidden Event Language Model

Hidden Event LM (HE-LM)� N-gram modeling for a stream of words including hidden events� hidden events typically correspond to sentence boundaries� in our case tagged DA boundaries act as events

Training: well <d> u- that’s pretty good i think <s> yeah <b> thanks <s>
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Hidden Event LM (HE-LM)� N-gram modeling for a stream of words including hidden events� hidden events typically correspond to sentence boundaries� in our case tagged DA boundaries act as events

Training: well <d> u- that’s pretty good i think <s> yeah <b> thanks <s>

Testing: well u- that’s pretty good i think yeah thanks
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Hidden Event Language Model

Hidden Event LM (HE-LM)� N-gram modeling for a stream of words including hidden events� hidden events typically correspond to sentence boundaries� in our case tagged DA boundaries act as events

Training: well <d> u- that’s pretty good i think <s> yeah <b> thanks <s>

Testing: well u- that’s pretty good i think yeah thanksp(<b>jpretty); p(<d>jpretty); : : : p(<>jpretty)� after each word the event with the highest posterior is inserted
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Hidden Event Language Model

Hidden Event LM (HE-LM)� N-gram modeling for a stream of words including hidden events� hidden events typically correspond to sentence boundaries� in our case tagged DA boundaries act as events

Training: well <d> u- that’s pretty good i think <s> yeah <b> thanks <s>

Testing: well u- that’s pretty good i think yeah thanksp(<b>jpretty); p(<d>jpretty); : : : p(<>jpretty)� after each word the event with the highest posterior is inserted

Result: well<> u- <> that’s <> pretty <> good <s> i <> think <d>
yeah <b> thanks <s>
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Tagger

Tagger� translation of a stream of words from vocabulary V into words
from a (tagged) vocabulary VT� system tries to find VT sequence with the highest posterior given:

� V� VT� VT

V p( j b+) p( j b) p( j d+)VT p( s+j d+ d)VT s+ s s s s d+ d s+ s
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Tagger

Tagger� translation of a stream of words from vocabulary V into words
from a (tagged) vocabulary VT� system tries to find VT sequence with the highest posterior given:� sequence of words in V� mapping probabilities from words in V to words in VT� N-gram LM for sequence of words in VT
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Tagger

Tagger� translation of a stream of words from vocabulary V into words
from a (tagged) vocabulary VT� system tries to find VT sequence with the highest posterior given:� sequence of words in V� mapping probabilities from words in V to words in VT� N-gram LM for sequence of words in VT

Input in V well u- that’s pretty good i think yeah thanks
Mapping p(yeahjyeahb+), p(yeahjyeahb), p(yeahjyeahd+), . . .
LM in VT p(yeahs+j id+, thinkd)

VT s+ s s s s d+ d s+ s
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Tagger

Tagger� translation of a stream of words from vocabulary V into words
from a (tagged) vocabulary VT� system tries to find VT sequence with the highest posterior given:� sequence of words in V� mapping probabilities from words in V to words in VT� N-gram LM for sequence of words in VT

Input in V well u- that’s pretty good i think yeah thanks
Mapping p(yeahjyeahb+), p(yeahjyeahb), p(yeahjyeahd+), . . .
LM in VT p(yeahs+j id+, thinkd)

Result in VT wells+ u-s that’ss prettys goods id+ thinkd yeahs+ thankss
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Performance Metrics

Previous Metrics� boundary based: NIST-SU metrics� word based: Lenient, and Strict metrics (ICASSP’05)

Proposed Metrics: DA Based� simple to interpret, directly related to DAs� counting units are the DAs as in transcripts� percentage of wrongly segmented DAs:
Dialog act Segmentation Error Rate (DSER)� percentage of wrongly segmented or classified DAs:
Dialog act Error Rate (DER)
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Segmentation Metrics

Metrics for Segmentation Errors

� NIST-SU, boundary basedNIST � SU = Misses+ FABoundaries � 100%

�

DER = missegmented DAsDAs � 100%
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Segmentation Metrics

Examples

Reference S|Q.Q.Q.Q|S.S.S|B|S.S|

System S|Q|S|Q.Q|D.D.D|S.S.S|
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Segmentation Metrics

Examples

Reference S|Q.Q.Q.Q|S.S.S|B|S.S|

System S|Q|S|Q.Q|D.D.D|S.S.S|

NIST-SU C E E C C E C

DSER C| E | C |E| E |

Metric Errors Reference Units Error Rate

NIST-SU 2 FA, 1 miss 5 boundaries 60%
DSER 3 match errors 5 DAs 60%
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Segmentation and Classification Metrics

Metrics for Segmentation and Classification errors

� NIST-SU, boundary basedNIST � SU = Substitutions+Misses+ FABoundaries � 100%

�
Lenient = mistagged WordsWords � 100%
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Segmentation and Classification Metrics

Metrics for Segmentation and Classification errors

� NIST-SU, boundary basedNIST � SU = Substitutions+Misses+ FABoundaries � 100%� Lenient, word based (does not consider segmentation)

Lenient = mistagged WordsWords � 100%
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Segmentation and Classification Metrics
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Segmentation and Classification Metrics
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Segmentation and Classification Metrics

Examples

Reference S|Q.Q.Q.Q|S.S.S|B|S.S|

System S|Q|S|Q.Q|D.D.D|S.S.S|

NIST-SU C E E C E E C

Lenient C C E C C E E E E C C

Strict C E E E E E E E E E E

DER C| E | E |E| E |

Metric Errors Reference Units Error Rate

NIST-SU 1 sub., 2 FA, 1 miss 5 boundaries 80%
Lenient 5 match errors 11 words 45%
Strict 10 match errors 11 words 91%
DER 4 match errors 5 DAs 80%

Matthias Zimmermann et al. 06/19/2005 – p. 13/21



Experimental Setup

ICSI meeting corpus with DA annotations (MRDA)

� as in Ang et al. (ICASSP’05)� 51 meetings for training, 11 for validation, and 11 for testing� 2 conditions: reference text, and STT� output� 5 DA typesy
�: average WER: 39%, 32% for native speakery: B=Backchannel, D=Disruption, F=Floor grabber, Q=Question, S=Statement
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Segmentation Performance

Condition System NIST-SU DSER

ICASSP’05 34.5 40.8
ICASSP’05� 46.0 53.0

Ref

�

STT

ICASSP’05� without prosody features
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Segmentation Performance

Condition System NIST-SU DSER

ICASSP’05 34.5 40.8
ICASSP’05� 46.0 53.0

Ref HE-LM 46.3 55.3
Tagger 51.1 61.7

ICASSP’05 45.5 49.4
ICASSP’05� 59.5 62.0

STT HE-LM 59.6 62.4
Tagger 62.8 66.9

ICASSP’05� without prosody features

Matthias Zimmermann et al. 06/19/2005 – p. 15/21



Segmentation and Classification Performance

Condition System NIST-SU Lenient Strict DER
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Segmentation and Classification Performance

Condition System NIST-SU Lenient Strict DER

ICASSP’05 52.6 20.0 64.4 54.4
ICASSP’05� 62.3 21.0 72.4 64.1

Ref HE-LM 62.2 23.3 74.3 66.5
Tagger 69.5 22.6 78.6 72.6

ICASSP’05 68.3 25.1 75.4 64.3
ICASSP’05� 78.3 25.0 82.9 73.2

STT HE-LM 78.0 26.2 83.8 73.9
Tagger 81.3 22.4 85.4 77.3

ICASSP’05� without prosody features
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Conclusions

Main Conclusions

� investigated HE-LM and Tagger based approaches� established baseline for joint segmentation and classification� promising first results given the simplicity of the approach� proposed and motivated DA based DSER and DER metrics
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Outlook

Future Directions

� A* algorithm to take into account complete DA hypotheses� integrate both word and prosody based information� use of word lattices produced by STT
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