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Introduction

Introduction

Which graphs can be embedded on some surface in such a way that the
resulting map is vertex-transitive?

Of course, a necessary condition is that the graph itself be vertex-transitive
– but is this sufficient?

What about other kinds of transitivity of a map, such as edge-, dart-, or
face-transitivity?

Overview of the lecture:

1 Surfaces, embeddings and maps

2 Existence of vertex-transitive maps

3 Construction of oriented maps

4 Algebra of maps and symmetries
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Introduction

Examples

Vertex-transitive embeddings of K4

and Q3 on a sphere:
An example of a vertex-transitive
embedding of K5 on a torus:
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Introduction

Examples

An example of a vertex-transitive embedding of K7 on a torus:

Exercise. Find vertex-transitive embeddings of K6 and K3,3 on a torus.
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Introduction

Examples

The Petersen graph on the projective
plane, with its dual – K6:

Back to our question: How
do we tell if a given graph
embeds vertex-transitively?
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J. Širáň Open Univ. and Slovak Tech. U. () Graph embeddings and symmetries 1. Vertex-transitive maps 5 / 20



Surfaces, embeddings and maps

The basics

Where do we want to embed graphs?

On “anything” that locally “behaves” like a plane!

A surface is a connected Hausdorff space in which every point has a
neighbourhood homeomorphic to an open disc.

Classification of compact surfaces:

orientable: Sg – sphere with g ≥ 0 handles

nonorientable: Nh – sphere with h crosscaps

Exercise. Do not try to prove the above classification theorem.
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Surfaces, embeddings and maps

Examples of surfaces

Torus:
Double-torus:
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Surfaces, embeddings and maps

Examples of identification polygons
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Surfaces, embeddings and maps

Embeddings

Informally, an embedding of a graph on a surface is a “drawing” with “no
edge crossings”. The embedding is cellular if “cutting the surface along
the graph” results in “pieces” that are all “equivalent” to discs.

Formally, if a graph Γ is viewed as a one-dimensional complex (with the
natural topology), then an embedding of Γ on a surface S is a continuous
injection j : Γ → S.

The embedding j is 2-cell or cellular if each component of S \ j(Γ) is
homeomorphic to an open disc. In such a case the pair (S, j(Γ)) is a map;
each component of S \ j(Γ) is a face.

Temporary restriction: We will consider only orientable surfaces. By
preassigning an orientation of the surface we will make our maps oriented.
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Surfaces, embeddings and maps

Facial walks

In an oriented map, faces
inherit the chosen orientation
of the surface.

This leads to thinking of
edges as being formed by
pairs of oppositely directed
darts.

Faces of the map are then
bounded by facial walks:
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Vertex-transitive maps

Existence of vertex-transitive maps

An automorphism (or, a symmetry) of an oriented map M is a permutation
of its darts which preserves facial walks and incidence. Group Aut(M).

Let M be a vertex-transitive map, that is, Aut(M) is transitive on vertices
of Γ. Note: Aut(M) < Aut(Γ). Then, the stabiliser Stab(v) of any vertex
v in the group Aut(M) is a cyclic (possibly, trivial) subgroup! Moreover,
the action of Stab(v) on the darts at v (i.e., pointing out of v) is free,
which means that no non-trivial automorphism in Stab(v) can fix a dart.

Thus, if Γ embeds vertex-transitively on an oriented surface, then Aut(Γ)
has a vertex-transitive subgroup with cyclic free vertex stabilisers.

The converse is true as well: [J. Š., T. Tucker, 2007]

Theorem 1. A connected graph Γ has an oriented vertex-transitive
embedding if and only if Aut(Γ) contains a vertex-transitive subgroup
with free cyclic vertex stabilisers.
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Theorem 1. A connected graph Γ has an oriented vertex-transitive
embedding if and only if Aut(Γ) contains a vertex-transitive subgroup
with free cyclic vertex stabilisers.
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Vertex-transitive maps

Illustration

Decide if the graph below admits an
oriented vertex-transitive embedding. Solution: The graph can be re-drawn

as follows:
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Vertex-transitive maps

Illustration

So, we have the Petersen graph P,

with vertex set “encoded” by
two-element subsets of {1, 2, 3, 4, 5}, two vertices being adjacent if the
corresponding sets are disjoint. It can be shown that Aut(P) ∼= S5.

By Theorem 1, P has an oriented vertex-transitive embedding if and only
if Aut(P) ∼= S5 contains a subgroup transitive on vertices such that the
vertex stabilisers are either trivial or isomorphic to Z3. But the first case is
impossible since P is not a Cayley graph. The second case is excluded
either, as S5 is known to contain no subgroup of order 30 at all. Therefore
the Petersen graph has no orientably vertex-transitive embedding.

This raises the following three questions:

1 Is the analysis of subgroups of Aut(Γ) unavoidable?

2 If a suitable subgroup of Aut(Γ) exists, how to get an embedding?

3 What are the supporting surfaces of such embeddings?
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J. Širáň Open Univ. and Slovak Tech. U. () Graph embeddings and symmetries 1. Vertex-transitive maps 13 / 20



Vertex-transitive maps

Illustration

So, we have the Petersen graph P, with vertex set “encoded” by
two-element subsets of {1, 2, 3, 4, 5}, two vertices being adjacent if the
corresponding sets are disjoint. It can be shown that Aut(P) ∼= S5.

By Theorem 1, P has an oriented vertex-transitive embedding if and only
if Aut(P) ∼= S5 contains a subgroup transitive on vertices such that the
vertex stabilisers are either trivial or isomorphic to Z3. But the first case is
impossible since P is not a Cayley graph. The second case is excluded
either, as S5 is known to contain no subgroup of order 30 at all.

Therefore
the Petersen graph has no orientably vertex-transitive embedding.

This raises the following three questions:

1 Is the analysis of subgroups of Aut(Γ) unavoidable?

2 If a suitable subgroup of Aut(Γ) exists, how to get an embedding?

3 What are the supporting surfaces of such embeddings?
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Algebraic approach to oriented maps

Permutation representation of maps

Recall: Edges of Γ are viewed as
pairs of darts; let D be the dart set
of Γ. For a dart b let λ(b) be the
reverse dart to b. This defines an
involutory permutation λ : D → D.

If M is an oriented map with dart set
D, we define another permutation ρ
of D, called rotation of M, as follows:
For any dart b ∈ D at a vertex v , the
dart ρ(b) is the cyclically next dart
at v in the chosen orientation of M.

Important: Cycles of ρλ correspond
to (directed) facial walks.

Note: ρλ(a) = b, ρλ(b) = c , etc., so
(a, b, c , d) is indeed a cycle of ρλ.
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Algebraic approach to oriented maps

Illustration

Example:

D = {a, a′, b, b′, c , c ′, d , d ′, e, e ′, f , f ′},
λ(x) = x ′,x ∈ {a, . . . , f }, λ2 = id ;
ρ = (a′, e, b)(b′, d ′, e ′, c)(c ′, f ′, f , d , a).
Construct the oriented map given by
(λ, ρ).

Solution. Vertices and faces of the map
correspond to orbits of ρ and ρλ where
ρλ = (a, e, c , f ′, d , e ′, b, d ′)(a′, c ′, b′)(f ):
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Algebraic approach to oriented maps

The correspondence theorem and automorphisms

Theorem 2. Let Γ be a connected graph with dart set D and dart-reversing
involution λ. Let ρ be any permutation of D such that, for each vertex v,
ρ is cyclic when restricted to darts at v . Then there is an oriented map M
with the underlying graph Γ such that the rotation of M is ρ.

The genus g of the supporting surface of M is given by Euler’s formula

|ρ| − |λ|+ |ρλ| = 2− 2g

where bars denote the number of orbits.

∗ Fixed points in λ can be allowed and they give rise to semi-edges.

A permutation A of D is an automorphism of M = M(λ, ρ) if Aρ = ρA
and Aλ = λA.

This means that Aut(M) is the centraliser of the group 〈λ, ρ〉 in the full
symmetric group Sym(D) of all permutations of D.
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Algebraic approach to oriented maps

Pictures are disappearing ...

... and “abstract nonsense” is taking over! Advantage: Good formalism
for proofs, which we illustrate by proving Theorem 1. Recall:

Theorem 1. A connected graph Γ has an oriented vertex-transitive
embedding if and only if Aut(Γ) contains a vertex-transitive subgroup G
with free cyclic vertex stabilisers.

1 Fix a vertex v of Γ and define a cyclic permutationρv on the darts
D(v) at v in such a way that G|D(v) < 〈ρv 〉.

2 For any g ∈ G define ρg(v) = gρvg−1.

3 Show that g(v) = h(v) ⇒ ρg(v) = ρh(v).

4 Set ρ =
∏

g∈G∗ ρg(v) where G ∗ ⊂ G is such that for each vertex
w ∈ Γ there is exactly one g ∈ G ∗ with g(v) = w .

5 By no. 2, passing to ρ the subscripts “disappear” and hence ρg = gρ
for each g ∈ G . Note that λg = gλ is automatic.

6 So, G < Aut(M(λ, ρ)), and the map M(λ, ρ) is vertex-transitive. 2
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1 Fix a vertex v of Γ and define a cyclic permutationρv on the darts
D(v) at v in such a way that G|D(v) < 〈ρv 〉.

2 For any g ∈ G define ρg(v) = gρvg−1.

3 Show that g(v) = h(v) ⇒ ρg(v) = ρh(v).

4 Set ρ =
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g∈G∗ ρg(v) where G ∗ ⊂ G is such that for each vertex
w ∈ Γ there is exactly one g ∈ G ∗ with g(v) = w .

5 By no. 2, passing to ρ the subscripts “disappear” and hence ρg = gρ
for each g ∈ G .

Note that λg = gλ is automatic.

6 So, G < Aut(M(λ, ρ)), and the map M(λ, ρ) is vertex-transitive. 2
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Algebraic approach to oriented maps

Cayley maps

A “cheating” way of constructing vertex-transitive graphs:

Given a group G and a generating set X of G such that X−1 = X ,
the Cayley graph Γ = Cay(G ,X ) has vertex set G and dart set
D = {(g , x); g ∈ G , x ∈ X}. A dart (g , x) emanates from g and
terminates at gx . Note that (gx , x−1) is the reverse dart to (g , x); this
pair forms an undirected edge of Γ. Therefore, λ(g , x) = (gx , x−1).

Same type of “cheating” applies to constructing vertex-transitive maps:

Let π be any cyclic permutation of X . Define ρ on D by
ρ(g , x) = (g , π(x)). The map M = M(λ, ρ) is called a Cayley map.

A Cayley map can be loosely described as an oriented embedding of a
Cayley graph in which the cyclic order of darts (in terms of generators)
at any vertex is “the same”.
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J. Širáň Open Univ. and Slovak Tech. U. () Graph embeddings and symmetries 1. Vertex-transitive maps 18 / 20



Algebraic approach to oriented maps

Cayley maps

A “cheating” way of constructing vertex-transitive graphs:

Given a group G and a generating set X of G such that X−1 = X ,
the Cayley graph Γ = Cay(G ,X ) has vertex set G and dart set
D = {(g , x); g ∈ G , x ∈ X}.

A dart (g , x) emanates from g and
terminates at gx . Note that (gx , x−1) is the reverse dart to (g , x); this
pair forms an undirected edge of Γ. Therefore, λ(g , x) = (gx , x−1).

Same type of “cheating” applies to constructing vertex-transitive maps:

Let π be any cyclic permutation of X . Define ρ on D by
ρ(g , x) = (g , π(x)). The map M = M(λ, ρ) is called a Cayley map.

A Cayley map can be loosely described as an oriented embedding of a
Cayley graph in which the cyclic order of darts (in terms of generators)
at any vertex is “the same”.
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J. Širáň Open Univ. and Slovak Tech. U. () Graph embeddings and symmetries 1. Vertex-transitive maps 18 / 20



Algebraic approach to oriented maps

Cayley maps

A “cheating” way of constructing vertex-transitive graphs:

Given a group G and a generating set X of G such that X−1 = X ,
the Cayley graph Γ = Cay(G ,X ) has vertex set G and dart set
D = {(g , x); g ∈ G , x ∈ X}. A dart (g , x) emanates from g and
terminates at gx . Note that (gx , x−1) is the reverse dart to (g , x); this
pair forms an undirected edge of Γ.

Therefore, λ(g , x) = (gx , x−1).

Same type of “cheating” applies to constructing vertex-transitive maps:

Let π be any cyclic permutation of X . Define ρ on D by
ρ(g , x) = (g , π(x)). The map M = M(λ, ρ) is called a Cayley map.

A Cayley map can be loosely described as an oriented embedding of a
Cayley graph in which the cyclic order of darts (in terms of generators)
at any vertex is “the same”.
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Algebraic approach to oriented maps

Cayley maps

Example. K5 on a torus as a Cayley
map for the group Z5, generating set
X = {1, 2, 3, 4}, with π = (1, 3, 4, 2):

Observe that Cayley maps are
automatically vertex-transitive.
Indeed, it can be checked that for
any h ∈ G the mapping Ah defined
by Ah(g , x) = (hg , x) is in Aut(M).

The group {Ah; h ∈ G} ∼= G is
regular (i.e., transitive and free) on
vertices of the Cayley map. So, G is
“just big enough” to make the
Cayley map vertex-transitive.

If there are no other automorphisms,
such Cayley maps can be viewed as
vertex-transitive maps with the
lowest “level of symmetry”.
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Conclusion

Conclusion and research problems

We have encountered vertex-transitive embeddings, among which the
Cayley maps had the “lowest level of symmetry”. Similar theory has been
developed for edge-transitive maps. In the second lecture we will continue
with considering the “highest level of symmetry” in oriented maps.

PROBLEMS

Warm-up: Find an infinite class of graphs Γ such that Aut(Γ) has a
vertex-transitive subgroup with cyclic vertex stabilisers which are not
free in their action on darts at a vertex.

Potential paper: Investigate spectra of genera of surfaces admitting
oriented vertex-transitive embeddings of graphs. For which “interesting”
graphs is such a spectrum a non-trivial interval?

Potential thesis: Develop a theory for (oriented as well as unoriented)
face-transitive embeddings of graphs.
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