# Graph embeddings and symmetries <br> 1. Vertex-transitive maps 

J. Širáň

Open Univ. and Slovak Tech. U.

## Introduction

## Introduction

Which graphs can be embedded on some surface in such a way that the resulting map is vertex-transitive?

## Introduction

Which graphs can be embedded on some surface in such a way that the resulting map is vertex-transitive?

Of course, a necessary condition is that the graph itself be vertex-transitive - but is this sufficient?

## Introduction

Which graphs can be embedded on some surface in such a way that the resulting map is vertex-transitive?

Of course, a necessary condition is that the graph itself be vertex-transitive - but is this sufficient?

What about other kinds of transitivity of a map, such as edge-, dart-, or face-transitivity?

## Introduction

Which graphs can be embedded on some surface in such a way that the resulting map is vertex-transitive?

Of course, a necessary condition is that the graph itself be vertex-transitive - but is this sufficient?

What about other kinds of transitivity of a map, such as edge-, dart-, or face-transitivity?

Overview of the lecture:

## Introduction

Which graphs can be embedded on some surface in such a way that the resulting map is vertex-transitive?

Of course, a necessary condition is that the graph itself be vertex-transitive - but is this sufficient?

What about other kinds of transitivity of a map, such as edge-, dart-, or face-transitivity?

Overview of the lecture:
(1) Surfaces, embeddings and maps

## Introduction

Which graphs can be embedded on some surface in such a way that the resulting map is vertex-transitive?

Of course, a necessary condition is that the graph itself be vertex-transitive - but is this sufficient?

What about other kinds of transitivity of a map, such as edge-, dart-, or face-transitivity?

Overview of the lecture:
(1) Surfaces, embeddings and maps
(2) Existence of vertex-transitive maps

## Introduction

Which graphs can be embedded on some surface in such a way that the resulting map is vertex-transitive?

Of course, a necessary condition is that the graph itself be vertex-transitive - but is this sufficient?

What about other kinds of transitivity of a map, such as edge-, dart-, or face-transitivity?

Overview of the lecture:
(1) Surfaces, embeddings and maps
(2) Existence of vertex-transitive maps
(3) Construction of oriented maps

## Introduction

Which graphs can be embedded on some surface in such a way that the resulting map is vertex-transitive?

Of course, a necessary condition is that the graph itself be vertex-transitive - but is this sufficient?

What about other kinds of transitivity of a map, such as edge-, dart-, or face-transitivity?

Overview of the lecture:
(1) Surfaces, embeddings and maps
(2) Existence of vertex-transitive maps
(3) Construction of oriented maps
(9) Algebra of maps and symmetries

## Examples

## Examples

Vertex-transitive embeddings of $K_{4}$ and $Q_{3}$ on a sphere:

## Examples

Vertex-transitive embeddings of $K_{4}$ and $Q_{3}$ on a sphere:


## Examples

Vertex-transitive embeddings of $K_{4}$ and $Q_{3}$ on a sphere:

An example of a vertex-transitive embedding of $K_{5}$ on a torus:


## Examples

Vertex-transitive embeddings of $K_{4}$ and $Q_{3}$ on a sphere:


An example of a vertex-transitive embedding of $K_{5}$ on a torus:


## Examples

An example of a vertex-transitive embedding of $K_{7}$ on a torus:

## Examples

An example of a vertex-transitive embedding of $K_{7}$ on a torus:


## Examples

An example of a vertex-transitive embedding of $K_{7}$ on a torus:


Exercise. Find vertex-transitive embeddings of $K_{6}$ and $K_{3,3}$ on a torus.

## Examples

The Petersen graph on the projective plane, with its dual $-K_{6}$ :

## Examples

The Petersen graph on the projective plane, with its dual $-K_{6}$ :


## Examples

The Petersen graph on the projective plane, with its dual $-K_{6}$ :



#### Abstract

Back to our question: How do we tell if a given graph embeds vertex-transitively?


## Examples

The Petersen graph on the projective plane, with its dual $-K_{6}$ :


Back to our question: How do we tell if a given graph embeds vertex-transitively?


## The basics

## The basics

## Where do we want to embed graphs?

## The basics

Where do we want to embed graphs?
On "anything" that locally "behaves" like a plane!

## The basics

Where do we want to embed graphs?
On "anything" that locally "behaves" like a plane!
A surface is a connected Hausdorff space in which every point has a neighbourhood homeomorphic to an open disc.

## The basics

Where do we want to embed graphs?
On "anything" that locally "behaves" like a plane!
A surface is a connected Hausdorff space in which every point has a neighbourhood homeomorphic to an open disc.

Classification of compact surfaces:

## The basics

Where do we want to embed graphs?
On "anything" that locally "behaves" like a plane!
A surface is a connected Hausdorff space in which every point has a neighbourhood homeomorphic to an open disc.

Classification of compact surfaces:

- orientable: $\mathcal{S}_{g}$ - sphere with $g \geq 0$ handles


## The basics

Where do we want to embed graphs?
On "anything" that locally "behaves" like a plane!
A surface is a connected Hausdorff space in which every point has a neighbourhood homeomorphic to an open disc.

Classification of compact surfaces:

- orientable: $\mathcal{S}_{g}$ - sphere with $g \geq 0$ handles
- nonorientable: $\mathcal{N}_{h}$ - sphere with $h$ crosscaps


## The basics

Where do we want to embed graphs?
On "anything" that locally "behaves" like a plane!
A surface is a connected Hausdorff space in which every point has a neighbourhood homeomorphic to an open disc.

Classification of compact surfaces:

- orientable: $\mathcal{S}_{g}$ - sphere with $g \geq 0$ handles
- nonorientable: $\mathcal{N}_{h}$ - sphere with $h$ crosscaps

Exercise. Do not try to prove the above classification theorem.

## Examples of surfaces

## Examples of surfaces

## Torus:

## Examples of surfaces

## Torus:




## Examples of surfaces

## Double-torus:

## Torus:




Examples of surfaces

## Double-torus:

## Torus:




Surfaces, embeddings and maps

## Examples of identification polygons

## Examples of identification polygons


sphere

torus

projective plane


Klein bottle

## Examples of identification polygons


sphere

torus

projective plane


Klein bottle

## Examples of identification polygons


sphere

torus

projective plane


Klein bottle

## Embeddings

## Embeddings

Informally, an embedding of a graph on a surface is a "drawing" with "no edge crossings".

## Embeddings

Informally, an embedding of a graph on a surface is a "drawing" with "no edge crossings". The embedding is cellular if "cutting the surface along the graph" results in "pieces" that are all "equivalent" to discs.

## Embeddings

Informally, an embedding of a graph on a surface is a "drawing" with "no edge crossings". The embedding is cellular if "cutting the surface along the graph" results in "pieces" that are all "equivalent" to discs.

Formally,

## Embeddings

Informally, an embedding of a graph on a surface is a "drawing" with "no edge crossings". The embedding is cellular if "cutting the surface along the graph" results in "pieces" that are all "equivalent" to discs.

Formally, if a graph 「 is viewed as a one-dimensional complex (with the natural topology),

## Embeddings

Informally, an embedding of a graph on a surface is a "drawing" with "no edge crossings". The embedding is cellular if "cutting the surface along the graph" results in "pieces" that are all "equivalent" to discs.

Formally, if a graph $\Gamma$ is viewed as a one-dimensional complex (with the natural topology), then an embedding of $\Gamma$ on a surface $\mathcal{S}$ is a continuous injection $j: \Gamma \rightarrow \mathcal{S}$.

## Embeddings

Informally, an embedding of a graph on a surface is a "drawing" with "no edge crossings". The embedding is cellular if "cutting the surface along the graph" results in "pieces" that are all "equivalent" to discs.

Formally, if a graph $\Gamma$ is viewed as a one-dimensional complex (with the natural topology), then an embedding of $\Gamma$ on a surface $\mathcal{S}$ is a continuous injection $j: \Gamma \rightarrow \mathcal{S}$.

The embedding $j$ is 2-cell or cellular if each component of $\mathcal{S} \backslash j(\Gamma)$ is homeomorphic to an open disc.

## Embeddings

Informally, an embedding of a graph on a surface is a "drawing" with "no edge crossings". The embedding is cellular if "cutting the surface along the graph" results in "pieces" that are all "equivalent" to discs.

Formally, if a graph $\Gamma$ is viewed as a one-dimensional complex (with the natural topology), then an embedding of $\Gamma$ on a surface $\mathcal{S}$ is a continuous injection $j: \Gamma \rightarrow \mathcal{S}$.

The embedding $j$ is 2-cell or cellular if each component of $\mathcal{S} \backslash j(\Gamma)$ is homeomorphic to an open disc. In such a case the pair $(\mathcal{S}, j(\Gamma))$ is a map; each component of $\mathcal{S} \backslash j(\Gamma)$ is a face.

## Embeddings

Informally, an embedding of a graph on a surface is a "drawing" with "no edge crossings". The embedding is cellular if "cutting the surface along the graph" results in "pieces" that are all "equivalent" to discs.

Formally, if a graph 「 is viewed as a one-dimensional complex (with the natural topology), then an embedding of $\Gamma$ on a surface $\mathcal{S}$ is a continuous injection $j: \Gamma \rightarrow \mathcal{S}$.

The embedding $j$ is 2-cell or cellular if each component of $\mathcal{S} \backslash j(\Gamma)$ is homeomorphic to an open disc. In such a case the pair $(\mathcal{S}, j(\Gamma))$ is a map; each component of $\mathcal{S} \backslash j(\Gamma)$ is a face.

Temporary restriction: We will consider only orientable surfaces.

## Embeddings

Informally, an embedding of a graph on a surface is a "drawing" with "no edge crossings". The embedding is cellular if "cutting the surface along the graph" results in "pieces" that are all "equivalent" to discs.

Formally, if a graph 「 is viewed as a one-dimensional complex (with the natural topology), then an embedding of $\Gamma$ on a surface $\mathcal{S}$ is a continuous injection $j: \Gamma \rightarrow \mathcal{S}$.

The embedding $j$ is 2-cell or cellular if each component of $\mathcal{S} \backslash j(\Gamma)$ is homeomorphic to an open disc. In such a case the pair $(\mathcal{S}, j(\Gamma))$ is a map; each component of $\mathcal{S} \backslash j(\Gamma)$ is a face.

Temporary restriction: We will consider only orientable surfaces. By preassigning an orientation of the surface we will make our maps oriented.

Surfaces, embeddings and maps

## Facial walks

## Facial walks

In an oriented map, faces inherit the chosen orientation of the surface.

## Facial walks

In an oriented map, faces inherit the chosen orientation of the surface.

This leads to thinking of edges as being formed by pairs of oppositely directed darts.

## Facial walks

In an oriented map, faces inherit the chosen orientation of the surface.

This leads to thinking of edges as being formed by pairs of oppositely directed darts.

Faces of the map are then bounded by facial walks:

## Facial walks

In an oriented map, faces inherit the chosen orientation of the surface.

This leads to thinking of edges as being formed by pairs of oppositely directed darts.

Faces of the map are then bounded by facial walks:


## Existence of vertex-transitive maps

## Existence of vertex-transitive maps

An automorphism (or, a symmetry) of an oriented map $M$ is a permutation of its darts which preserves facial walks and incidence.

## Existence of vertex-transitive maps

An automorphism (or, a symmetry) of an oriented map $M$ is a permutation of its darts which preserves facial walks and incidence. Group $\operatorname{Aut}(M)$.

## Existence of vertex-transitive maps

An automorphism (or, a symmetry) of an oriented map $M$ is a permutation of its darts which preserves facial walks and incidence. Group Aut(M).

Let $M$ be a vertex-transitive map, that is, $\operatorname{Aut}(M)$ is transitive on vertices of $\Gamma$.

## Existence of vertex-transitive maps

An automorphism (or, a symmetry) of an oriented map $M$ is a permutation of its darts which preserves facial walks and incidence. Group Aut(M).

Let $M$ be a vertex-transitive map, that is, $\operatorname{Aut}(M)$ is transitive on vertices of Г. Note: $\operatorname{Aut}(M)<\operatorname{Aut}(\Gamma)$.

## Existence of vertex-transitive maps

An automorphism (or, a symmetry) of an oriented map $M$ is a permutation of its darts which preserves facial walks and incidence. Group $\operatorname{Aut}(M)$.

Let $M$ be a vertex-transitive map, that is, $\operatorname{Aut}(M)$ is transitive on vertices of $\Gamma$. Note: $\operatorname{Aut}(M)<\operatorname{Aut}(\Gamma)$. Then, the stabiliser $\operatorname{Stab}(v)$ of any vertex $v$ in the group $\operatorname{Aut}(M)$ is a cyclic (possibly, trivial) subgroup!

## Existence of vertex-transitive maps

An automorphism (or, a symmetry) of an oriented map $M$ is a permutation of its darts which preserves facial walks and incidence. Group $\operatorname{Aut}(M)$.

Let $M$ be a vertex-transitive map, that is, $\operatorname{Aut}(M)$ is transitive on vertices of $\Gamma$. Note: $\operatorname{Aut}(M)<\operatorname{Aut}(\Gamma)$. Then, the stabiliser $\operatorname{Stab}(v)$ of any vertex $v$ in the group $\operatorname{Aut}(M)$ is a cyclic (possibly, trivial) subgroup! Moreover, the action of $\operatorname{Stab}(v)$ on the darts at $v$ (i.e., pointing out of $v$ ) is free,

## Existence of vertex-transitive maps

An automorphism (or, a symmetry) of an oriented map $M$ is a permutation of its darts which preserves facial walks and incidence. Group Aut(M).

Let $M$ be a vertex-transitive map, that is, $\operatorname{Aut}(M)$ is transitive on vertices of $\Gamma$. Note: $\operatorname{Aut}(M)<\operatorname{Aut}(\Gamma)$. Then, the stabiliser $\operatorname{Stab}(v)$ of any vertex $v$ in the group $\operatorname{Aut}(M)$ is a cyclic (possibly, trivial) subgroup! Moreover, the action of $\operatorname{Stab}(v)$ on the darts at $v$ (i.e., pointing out of $v$ ) is free, which means that no non-trivial automorphism in $\operatorname{Stab}(v)$ can fix a dart.

## Existence of vertex-transitive maps

An automorphism (or, a symmetry) of an oriented map $M$ is a permutation of its darts which preserves facial walks and incidence. Group $\operatorname{Aut}(M)$.

Let $M$ be a vertex-transitive map, that is, $\operatorname{Aut}(M)$ is transitive on vertices of $\Gamma$. Note: $\operatorname{Aut}(M)<\operatorname{Aut}(\Gamma)$. Then, the stabiliser $\operatorname{Stab}(v)$ of any vertex $v$ in the group $\operatorname{Aut}(M)$ is a cyclic (possibly, trivial) subgroup! Moreover, the action of $\operatorname{Stab}(v)$ on the darts at $v$ (i.e., pointing out of $v$ ) is free, which means that no non-trivial automorphism in $\operatorname{Stab}(v)$ can fix a dart.

Thus, if $\Gamma$ embeds vertex-transitively on an oriented surface,

## Existence of vertex-transitive maps

An automorphism (or, a symmetry) of an oriented map $M$ is a permutation of its darts which preserves facial walks and incidence. Group Aut(M).

Let $M$ be a vertex-transitive map, that is, $\operatorname{Aut}(M)$ is transitive on vertices of $\Gamma$. Note: $\operatorname{Aut}(M)<\operatorname{Aut}(\Gamma)$. Then, the stabiliser $\operatorname{Stab}(v)$ of any vertex $v$ in the group $\operatorname{Aut}(M)$ is a cyclic (possibly, trivial) subgroup! Moreover, the action of $\operatorname{Stab}(v)$ on the darts at $v$ (i.e., pointing out of $v$ ) is free, which means that no non-trivial automorphism in $\operatorname{Stab}(v)$ can fix a dart.

Thus, if $\Gamma$ embeds vertex-transitively on an oriented surface, then $\operatorname{Aut}(\Gamma)$ has a vertex-transitive subgroup with cyclic free vertex stabilisers.

## Existence of vertex-transitive maps

An automorphism (or, a symmetry) of an oriented map $M$ is a permutation of its darts which preserves facial walks and incidence. Group $\operatorname{Aut}(M)$.

Let $M$ be a vertex-transitive map, that is, $\operatorname{Aut}(M)$ is transitive on vertices of $\Gamma$. Note: $\operatorname{Aut}(M)<\operatorname{Aut}(\Gamma)$. Then, the stabiliser $\operatorname{Stab}(v)$ of any vertex $v$ in the group $\operatorname{Aut}(M)$ is a cyclic (possibly, trivial) subgroup! Moreover, the action of $\operatorname{Stab}(v)$ on the darts at $v$ (i.e., pointing out of $v$ ) is free, which means that no non-trivial automorphism in $\operatorname{Stab}(v)$ can fix a dart.

Thus, if $\Gamma$ embeds vertex-transitively on an oriented surface, then Aut( $\Gamma$ ) has a vertex-transitive subgroup with cyclic free vertex stabilisers.

The converse is true as well: [J. Š., T. Tucker, 2007]

## Existence of vertex-transitive maps

An automorphism (or, a symmetry) of an oriented map $M$ is a permutation of its darts which preserves facial walks and incidence. Group $\operatorname{Aut}(M)$.

Let $M$ be a vertex-transitive map, that is, $\operatorname{Aut}(M)$ is transitive on vertices of $\Gamma$. Note: $\operatorname{Aut}(M)<\operatorname{Aut}(\Gamma)$. Then, the stabiliser $\operatorname{Stab}(v)$ of any vertex $v$ in the group $\operatorname{Aut}(M)$ is a cyclic (possibly, trivial) subgroup! Moreover, the action of $\operatorname{Stab}(v)$ on the darts at $v$ (i.e., pointing out of $v$ ) is free, which means that no non-trivial automorphism in $\operatorname{Stab}(v)$ can fix a dart.

Thus, if $\Gamma$ embeds vertex-transitively on an oriented surface, then $\operatorname{Aut}(\Gamma)$ has a vertex-transitive subgroup with cyclic free vertex stabilisers.

The converse is true as well: [J. Š., T. Tucker, 2007]
Theorem 1. A connected graph 「 has an oriented vertex-transitive embedding if and only if Aut $(\Gamma)$ contains a vertex-transitive subgroup with free cyclic vertex stabilisers.

## Illustration

## Illustration

## Decide if the graph below admits an oriented vertex-transitive embedding.

## Illustration

Decide if the graph below admits an oriented vertex-transitive embedding.


## Illustration

Decide if the graph below admits an oriented vertex-transitive embedding. Solution: The graph can be re-drawn
 as follows:

## Illustration

Decide if the graph below admits an oriented vertex-transitive embedding.
 as follows:


## Illustration

So, we have the Petersen graph $P$,

## Illustration

So, we have the Petersen graph $P$, with vertex set "encoded" by two-element subsets of $\{1,2,3,4,5\}$, two vertices being adjacent if the corresponding sets are disjoint.

## Illustration

So, we have the Petersen graph $P$, with vertex set "encoded" by two-element subsets of $\{1,2,3,4,5\}$, two vertices being adjacent if the corresponding sets are disjoint. It can be shown that $\operatorname{Aut}(P) \cong S_{5}$.

## Illustration

So, we have the Petersen graph $P$, with vertex set "encoded" by two-element subsets of $\{1,2,3,4,5\}$, two vertices being adjacent if the corresponding sets are disjoint. It can be shown that $\operatorname{Aut}(P) \cong S_{5}$.

By Theorem 1, $P$ has an oriented vertex-transitive embedding if and only if $\operatorname{Aut}(P) \cong S_{5}$ contains a subgroup transitive on vertices such that the vertex stabilisers are either trivial or isomorphic to $Z_{3}$.

## Illustration

So, we have the Petersen graph $P$, with vertex set "encoded" by two-element subsets of $\{1,2,3,4,5\}$, two vertices being adjacent if the corresponding sets are disjoint. It can be shown that $\operatorname{Aut}(P) \cong S_{5}$.

By Theorem 1, $P$ has an oriented vertex-transitive embedding if and only if $\operatorname{Aut}(P) \cong S_{5}$ contains a subgroup transitive on vertices such that the vertex stabilisers are either trivial or isomorphic to $Z_{3}$. But the first case is impossible since $P$ is not a Cayley graph.

## Illustration

So, we have the Petersen graph $P$, with vertex set "encoded" by two-element subsets of $\{1,2,3,4,5\}$, two vertices being adjacent if the corresponding sets are disjoint. It can be shown that $\operatorname{Aut}(P) \cong S_{5}$.

By Theorem 1, $P$ has an oriented vertex-transitive embedding if and only if $\operatorname{Aut}(P) \cong S_{5}$ contains a subgroup transitive on vertices such that the vertex stabilisers are either trivial or isomorphic to $Z_{3}$. But the first case is impossible since $P$ is not a Cayley graph. The second case is excluded either, as $S_{5}$ is known to contain no subgroup of order 30 at all.

## Illustration

So, we have the Petersen graph $P$, with vertex set "encoded" by two-element subsets of $\{1,2,3,4,5\}$, two vertices being adjacent if the corresponding sets are disjoint. It can be shown that $\operatorname{Aut}(P) \cong S_{5}$.

By Theorem 1, $P$ has an oriented vertex-transitive embedding if and only if $\operatorname{Aut}(P) \cong S_{5}$ contains a subgroup transitive on vertices such that the vertex stabilisers are either trivial or isomorphic to $Z_{3}$. But the first case is impossible since $P$ is not a Cayley graph. The second case is excluded either, as $S_{5}$ is known to contain no subgroup of order 30 at all. Therefore the Petersen graph has no orientably vertex-transitive embedding.

## Illustration

So, we have the Petersen graph $P$, with vertex set "encoded" by two-element subsets of $\{1,2,3,4,5\}$, two vertices being adjacent if the corresponding sets are disjoint. It can be shown that $\operatorname{Aut}(P) \cong S_{5}$.

By Theorem 1, $P$ has an oriented vertex-transitive embedding if and only if $\operatorname{Aut}(P) \cong S_{5}$ contains a subgroup transitive on vertices such that the vertex stabilisers are either trivial or isomorphic to $Z_{3}$. But the first case is impossible since $P$ is not a Cayley graph. The second case is excluded either, as $S_{5}$ is known to contain no subgroup of order 30 at all. Therefore the Petersen graph has no orientably vertex-transitive embedding.

This raises the following three questions:

## Illustration

So, we have the Petersen graph $P$, with vertex set "encoded" by two-element subsets of $\{1,2,3,4,5\}$, two vertices being adjacent if the corresponding sets are disjoint. It can be shown that $\operatorname{Aut}(P) \cong S_{5}$.

By Theorem 1, $P$ has an oriented vertex-transitive embedding if and only if $\operatorname{Aut}(P) \cong S_{5}$ contains a subgroup transitive on vertices such that the vertex stabilisers are either trivial or isomorphic to $Z_{3}$. But the first case is impossible since $P$ is not a Cayley graph. The second case is excluded either, as $S_{5}$ is known to contain no subgroup of order 30 at all. Therefore the Petersen graph has no orientably vertex-transitive embedding.

This raises the following three questions:
(1) Is the analysis of subgroups of $\operatorname{Aut}(\Gamma)$ unavoidable?

## Illustration

So, we have the Petersen graph $P$, with vertex set "encoded" by two-element subsets of $\{1,2,3,4,5\}$, two vertices being adjacent if the corresponding sets are disjoint. It can be shown that $\operatorname{Aut}(P) \cong S_{5}$.

By Theorem 1, $P$ has an oriented vertex-transitive embedding if and only if $\operatorname{Aut}(P) \cong S_{5}$ contains a subgroup transitive on vertices such that the vertex stabilisers are either trivial or isomorphic to $Z_{3}$. But the first case is impossible since $P$ is not a Cayley graph. The second case is excluded either, as $S_{5}$ is known to contain no subgroup of order 30 at all. Therefore the Petersen graph has no orientably vertex-transitive embedding.

This raises the following three questions:
(1) Is the analysis of subgroups of $\operatorname{Aut}(\Gamma)$ unavoidable?
(2) If a suitable subgroup of $\operatorname{Aut}(\Gamma)$ exists, how to get an embedding?

## Illustration

So, we have the Petersen graph $P$, with vertex set "encoded" by two-element subsets of $\{1,2,3,4,5\}$, two vertices being adjacent if the corresponding sets are disjoint. It can be shown that $\operatorname{Aut}(P) \cong S_{5}$.

By Theorem 1, $P$ has an oriented vertex-transitive embedding if and only if $\operatorname{Aut}(P) \cong S_{5}$ contains a subgroup transitive on vertices such that the vertex stabilisers are either trivial or isomorphic to $Z_{3}$. But the first case is impossible since $P$ is not a Cayley graph. The second case is excluded either, as $S_{5}$ is known to contain no subgroup of order 30 at all. Therefore the Petersen graph has no orientably vertex-transitive embedding.

This raises the following three questions:
(1) Is the analysis of subgroups of $\operatorname{Aut}(\Gamma)$ unavoidable?
(2) If a suitable subgroup of Aut $(\Gamma)$ exists, how to get an embedding?
(3) What are the supporting surfaces of such embeddings?

## Permutation representation of maps

## Permutation representation of maps

Recall: Edges of $\Gamma$ are viewed as pairs of darts;

## Permutation representation of maps

## Recall: Edges of $\Gamma$ are viewed as

 pairs of darts; let $D$ be the dart set of $\Gamma$.
## Permutation representation of maps

Recall: Edges of $\Gamma$ are viewed as pairs of darts; let $D$ be the dart set of $\Gamma$. For a dart $b$ let $\lambda(b)$ be the reverse dart to $b$.

## Permutation representation of maps

Recall: Edges of $\Gamma$ are viewed as pairs of darts; let $D$ be the dart set of $\Gamma$. For a dart $b$ let $\lambda(b)$ be the reverse dart to $b$. This defines an involutory permutation $\lambda: D \rightarrow D$.

## Permutation representation of maps

Recall: Edges of $\Gamma$ are viewed as pairs of darts; let $D$ be the dart set of $\Gamma$. For a dart $b$ let $\lambda(b)$ be the reverse dart to $b$. This defines an involutory permutation $\lambda: D \rightarrow D$.
If $M$ is an oriented map with dart set D,

## Permutation representation of maps

Recall: Edges of $\Gamma$ are viewed as pairs of darts; let $D$ be the dart set of $\Gamma$. For a dart $b$ let $\lambda(b)$ be the reverse dart to $b$. This defines an involutory permutation $\lambda: D \rightarrow D$.

If $M$ is an oriented map with dart set
$D$, we define another permutation $\rho$ of $D$, called rotation of $M$, as follows:

## Permutation representation of maps

Recall: Edges of $\Gamma$ are viewed as pairs of darts; let $D$ be the dart set of $\Gamma$. For a dart $b$ let $\lambda(b)$ be the reverse dart to $b$. This defines an involutory permutation $\lambda: D \rightarrow D$.

If $M$ is an oriented map with dart set
$D$, we define another permutation $\rho$ of $D$, called rotation of $M$, as follows: For any dart $b \in D$ at a vertex $v$, the dart $\rho(b)$ is the cyclically next dart at $v$ in the chosen orientation of $M$.

## Permutation representation of maps

Recall: Edges of $\Gamma$ are viewed as pairs of darts; let $D$ be the dart set of $\Gamma$. For a dart $b$ let $\lambda(b)$ be the reverse dart to $b$. This defines an involutory permutation $\lambda: D \rightarrow D$.

If $M$ is an oriented map with dart set
$D$, we define another permutation $\rho$ of $D$, called rotation of $M$, as follows: For any dart $b \in D$ at a vertex $v$, the dart $\rho(b)$ is the cyclically next dart at $v$ in the chosen orientation of $M$.

Important: Cycles of $\rho \lambda$ correspond to (directed) facial walks.

## Permutation representation of maps

Recall: Edges of $\Gamma$ are viewed as pairs of darts; let $D$ be the dart set of $\Gamma$. For a dart $b$ let $\lambda(b)$ be the reverse dart to $b$. This defines an involutory permutation $\lambda: D \rightarrow D$.

If $M$ is an oriented map with dart set $D$, we define another permutation $\rho$ of $D$, called rotation of $M$, as follows: For any dart $b \in D$ at a vertex $v$, the dart $\rho(b)$ is the cyclically next dart at $v$ in the chosen orientation of $M$.

Important: Cycles of $\rho \lambda$ correspond to (directed) facial walks.


Note: $\rho \lambda(a)=b$,

## Permutation representation of maps

Recall: Edges of $\Gamma$ are viewed as pairs of darts; let $D$ be the dart set of $\Gamma$. For a dart $b$ let $\lambda(b)$ be the reverse dart to $b$. This defines an involutory permutation $\lambda: D \rightarrow D$.

If $M$ is an oriented map with dart set $D$, we define another permutation $\rho$ of $D$, called rotation of $M$, as follows: For any dart $b \in D$ at a vertex $v$, the dart $\rho(b)$ is the cyclically next dart at $v$ in the chosen orientation of $M$.

Important: Cycles of $\rho \lambda$ correspond to (directed) facial walks.


Note: $\rho \lambda(a)=b, \rho \lambda(b)=c$,

## Permutation representation of maps

Recall: Edges of $\Gamma$ are viewed as pairs of darts; let $D$ be the dart set of $\Gamma$. For a dart $b$ let $\lambda(b)$ be the reverse dart to $b$. This defines an involutory permutation $\lambda: D \rightarrow D$.

If $M$ is an oriented map with dart set $D$, we define another permutation $\rho$ of $D$, called rotation of $M$, as follows: For any dart $b \in D$ at a vertex $v$, the dart $\rho(b)$ is the cyclically next dart at $v$ in the chosen orientation of $M$.

Important: Cycles of $\rho \lambda$ correspond to (directed) facial walks.


Note: $\rho \lambda(a)=b, \rho \lambda(b)=c$, etc., so $(a, b, c, d)$ is indeed a cycle of $\rho \lambda$.

## Illustration

## Illustration

## Example:

## Illustration

## Example:

$D=\left\{a, a^{\prime}, b, b^{\prime}, c, c^{\prime}, d, d^{\prime}, e, e^{\prime}, f, f^{\prime}\right\}$, $\lambda(x)=x^{\prime}, x \in\{a, \ldots, f\}, \lambda^{2}=i d$; $\rho=\left(a^{\prime}, e, b\right)\left(b^{\prime}, d^{\prime}, e^{\prime}, c\right)\left(c^{\prime}, f^{\prime}, f, d, a\right)$.
Construct the oriented map given by $(\lambda, \rho)$.

## Illustration

## Example:

$D=\left\{a, a^{\prime}, b, b^{\prime}, c, c^{\prime}, d, d^{\prime}, e, e^{\prime}, f, f^{\prime}\right\}$, $\lambda(x)=x^{\prime}, x \in\{a, \ldots, f\}, \lambda^{2}=i d$; $\rho=\left(a^{\prime}, e, b\right)\left(b^{\prime}, d^{\prime}, e^{\prime}, c\right)\left(c^{\prime}, f^{\prime}, f, d, a\right)$.
Construct the oriented map given by $(\lambda, \rho)$.


Solution. Vertices and faces of the map correspond to orbits of $\rho$ and $\rho \lambda$ where $\rho \lambda=\left(a, e, c, f^{\prime}, d, e^{\prime}, b, d^{\prime}\right)\left(a^{\prime}, c^{\prime}, b^{\prime}\right)(f):$

## The correspondence theorem and automorphisms

## The correspondence theorem and automorphisms

Theorem 2. Let 「 be a connected graph with dart set $D$ and dart-reversing involution $\lambda$.

## The correspondence theorem and automorphisms

Theorem 2. Let $\Gamma$ be a connected graph with dart set $D$ and dart-reversing involution $\lambda$. Let $\rho$ be any permutation of $D$ such that, for each vertex $v$, $\rho$ is cyclic when restricted to darts at $v$.

## The correspondence theorem and automorphisms

Theorem 2. Let $\Gamma$ be a connected graph with dart set $D$ and dart-reversing involution $\lambda$. Let $\rho$ be any permutation of $D$ such that, for each vertex $v$, $\rho$ is cyclic when restricted to darts at $v$. Then there is an oriented map $M$ with the underlying graph 「 such that the rotation of $M$ is $\rho$.

## The correspondence theorem and automorphisms

Theorem 2. Let $\Gamma$ be a connected graph with dart set $D$ and dart-reversing involution $\lambda$. Let $\rho$ be any permutation of $D$ such that, for each vertex $v$, $\rho$ is cyclic when restricted to darts at $v$. Then there is an oriented map $M$ with the underlying graph $\Gamma$ such that the rotation of $M$ is $\rho$.

The genus $g$ of the supporting surface of $M$ is given by Euler's formula

## The correspondence theorem and automorphisms

Theorem 2. Let $\Gamma$ be a connected graph with dart set $D$ and dart-reversing involution $\lambda$. Let $\rho$ be any permutation of $D$ such that, for each vertex $v$, $\rho$ is cyclic when restricted to darts at $v$. Then there is an oriented map $M$ with the underlying graph 「 such that the rotation of $M$ is $\rho$.

The genus $g$ of the supporting surface of $M$ is given by Euler's formula

$$
|\rho|-|\lambda|+|\rho \lambda|=2-2 g
$$

## The correspondence theorem and automorphisms

Theorem 2. Let $\Gamma$ be a connected graph with dart set $D$ and dart-reversing involution $\lambda$. Let $\rho$ be any permutation of $D$ such that, for each vertex $v$, $\rho$ is cyclic when restricted to darts at $v$. Then there is an oriented map $M$ with the underlying graph $\Gamma$ such that the rotation of $M$ is $\rho$.

The genus $g$ of the supporting surface of $M$ is given by Euler's formula

$$
|\rho|-|\lambda|+|\rho \lambda|=2-2 g
$$

where bars denote the number of orbits.

## The correspondence theorem and automorphisms

Theorem 2. Let $\Gamma$ be a connected graph with dart set $D$ and dart-reversing involution $\lambda$. Let $\rho$ be any permutation of $D$ such that, for each vertex $v$, $\rho$ is cyclic when restricted to darts at $v$. Then there is an oriented map $M$ with the underlying graph $\Gamma$ such that the rotation of $M$ is $\rho$.

The genus $g$ of the supporting surface of $M$ is given by Euler's formula

$$
|\rho|-|\lambda|+|\rho \lambda|=2-2 g
$$

where bars denote the number of orbits.

* Fixed points in $\lambda$ can be allowed and they give rise to semi-edges.


## The correspondence theorem and automorphisms

Theorem 2. Let $\Gamma$ be a connected graph with dart set $D$ and dart-reversing involution $\lambda$. Let $\rho$ be any permutation of $D$ such that, for each vertex $v$, $\rho$ is cyclic when restricted to darts at $v$. Then there is an oriented map $M$ with the underlying graph $\Gamma$ such that the rotation of $M$ is $\rho$.

The genus $g$ of the supporting surface of $M$ is given by Euler's formula

$$
|\rho|-|\lambda|+|\rho \lambda|=2-2 g
$$

where bars denote the number of orbits.

* Fixed points in $\lambda$ can be allowed and they give rise to semi-edges.

A permutation $A$ of $D$ is an automorphism of $M=M(\lambda, \rho)$ if $A \rho=\rho A$ and $A \lambda=\lambda A$.

## The correspondence theorem and automorphisms

Theorem 2. Let $\Gamma$ be a connected graph with dart set $D$ and dart-reversing involution $\lambda$. Let $\rho$ be any permutation of $D$ such that, for each vertex $v$, $\rho$ is cyclic when restricted to darts at $v$. Then there is an oriented map $M$ with the underlying graph $\Gamma$ such that the rotation of $M$ is $\rho$.

The genus $g$ of the supporting surface of $M$ is given by Euler's formula

$$
|\rho|-|\lambda|+|\rho \lambda|=2-2 g
$$

where bars denote the number of orbits.

* Fixed points in $\lambda$ can be allowed and they give rise to semi-edges.

A permutation $A$ of $D$ is an automorphism of $M=M(\lambda, \rho)$ if $A \rho=\rho A$ and $A \lambda=\lambda A$.

This means that $\operatorname{Aut}(M)$ is the centraliser of the group $\langle\lambda, \rho\rangle$ in the full symmetric group $\operatorname{Sym}(D)$ of all permutations of $D$.

Algebraic approach to oriented maps

## Pictures are disappearing ...

## Pictures are disappearing ...

... and "abstract nonsense" is taking over!

## Pictures are disappearing ...

... and "abstract nonsense" is taking over! Advantage: Good formalism for proofs, which we illustrate by proving Theorem 1. Recall:

## Pictures are disappearing ...

... and "abstract nonsense" is taking over! Advantage: Good formalism for proofs, which we illustrate by proving Theorem 1. Recall:

Theorem 1. A connected graph 「 has an oriented vertex-transitive embedding if and only if Aut $(\Gamma)$ contains a vertex-transitive subgroup $G$ with free cyclic vertex stabilisers.

## Pictures are disappearing ...

... and "abstract nonsense" is taking over! Advantage: Good formalism for proofs, which we illustrate by proving Theorem 1. Recall:

Theorem 1. A connected graph 「 has an oriented vertex-transitive embedding if and only if Aut $(\Gamma)$ contains a vertex-transitive subgroup $G$ with free cyclic vertex stabilisers.
(1) Fix a vertex $v$ of $\Gamma$ and define a cyclic permutation $\rho_{v}$ on the darts $D(v)$ at $v$ in such a way that $G_{\mid D(v)}<\left\langle\rho_{v}\right\rangle$.

## Pictures are disappearing ...

... and "abstract nonsense" is taking over! Advantage: Good formalism for proofs, which we illustrate by proving Theorem 1. Recall:

Theorem 1. A connected graph 「 has an oriented vertex-transitive embedding if and only if Aut $(\Gamma)$ contains a vertex-transitive subgroup $G$ with free cyclic vertex stabilisers.
(1) Fix a vertex $v$ of $\Gamma$ and define a cyclic permutation $\rho_{v}$ on the darts $D(v)$ at $v$ in such a way that $G_{\mid D(v)}<\left\langle\rho_{v}\right\rangle$.
(2) For any $g \in G$ define $\rho_{g(v)}=g \rho_{v} g^{-1}$.

## Pictures are disappearing ...

... and "abstract nonsense" is taking over! Advantage: Good formalism for proofs, which we illustrate by proving Theorem 1. Recall:

Theorem 1. A connected graph 「 has an oriented vertex-transitive embedding if and only if Aut $(\Gamma)$ contains a vertex-transitive subgroup $G$ with free cyclic vertex stabilisers.
(1) Fix a vertex $v$ of $\Gamma$ and define a cyclic permutation $\rho_{v}$ on the darts $D(v)$ at $v$ in such a way that $G_{\mid D(v)}<\left\langle\rho_{v}\right\rangle$.
(2) For any $g \in G$ define $\rho_{g(v)}=g \rho_{v} g^{-1}$.
(3) Show that $g(v)=h(v) \Rightarrow \rho_{g(v)}=\rho_{h(v)}$.

## Pictures are disappearing ...

... and "abstract nonsense" is taking over! Advantage: Good formalism for proofs, which we illustrate by proving Theorem 1. Recall:

Theorem 1. A connected graph Г has an oriented vertex-transitive embedding if and only if Aut $(\Gamma)$ contains a vertex-transitive subgroup $G$ with free cyclic vertex stabilisers.
(1) Fix a vertex $v$ of $\Gamma$ and define a cyclic permutation $\rho_{v}$ on the darts $D(v)$ at $v$ in such a way that $G_{\mid D(v)}<\left\langle\rho_{v}\right\rangle$.
(2) For any $g \in G$ define $\rho_{g(v)}=g \rho_{v} g^{-1}$.
(3) Show that $g(v)=h(v) \Rightarrow \rho_{g(v)}=\rho_{h(v)}$.
(9) Set $\rho=\prod_{g \in G^{*}} \rho_{g(v)}$ where $G^{*} \subset G$ is such that for each vertex $w \in \Gamma$ there is exactly one $g \in G^{*}$ with $g(v)=w$.

## Pictures are disappearing ...

... and "abstract nonsense" is taking over! Advantage: Good formalism for proofs, which we illustrate by proving Theorem 1. Recall:

Theorem 1. A connected graph 「 has an oriented vertex-transitive embedding if and only if Aut $(\Gamma)$ contains a vertex-transitive subgroup $G$ with free cyclic vertex stabilisers.
(1) Fix a vertex $v$ of $\Gamma$ and define a cyclic permutation $\rho_{v}$ on the darts $D(v)$ at $v$ in such a way that $G_{\mid D(v)}<\left\langle\rho_{v}\right\rangle$.
(2) For any $g \in G$ define $\rho_{g(v)}=g \rho_{v} g^{-1}$.
(3) Show that $g(v)=h(v) \Rightarrow \rho_{g(v)}=\rho_{h(v)}$.
(9) Set $\rho=\prod_{g \in G^{*}} \rho_{g(v)}$ where $G^{*} \subset G$ is such that for each vertex $w \in \Gamma$ there is exactly one $g \in G^{*}$ with $g(v)=w$.
(5) By no. 2, passing to $\rho$ the subscripts "disappear" and hence $\rho g=g \rho$ for each $g \in G$.

## Pictures are disappearing ...

... and "abstract nonsense" is taking over! Advantage: Good formalism for proofs, which we illustrate by proving Theorem 1. Recall:

Theorem 1. A connected graph 「 has an oriented vertex-transitive embedding if and only if Aut $(\Gamma)$ contains a vertex-transitive subgroup $G$ with free cyclic vertex stabilisers.
(1) Fix a vertex $v$ of $\Gamma$ and define a cyclic permutation $\rho_{v}$ on the darts $D(v)$ at $v$ in such a way that $G_{\mid D(v)}<\left\langle\rho_{v}\right\rangle$.
(2) For any $g \in G$ define $\rho_{g(v)}=g \rho_{v} g^{-1}$.
(3) Show that $g(v)=h(v) \Rightarrow \rho_{g(v)}=\rho_{h(v)}$.
(9) Set $\rho=\prod_{g \in G^{*}} \rho_{g(v)}$ where $G^{*} \subset G$ is such that for each vertex $w \in \Gamma$ there is exactly one $g \in G^{*}$ with $g(v)=w$.
(5) By no. 2, passing to $\rho$ the subscripts "disappear" and hence $\rho g=g \rho$ for each $g \in G$. Note that $\lambda g=g \lambda$ is automatic.

## Pictures are disappearing ...

... and "abstract nonsense" is taking over! Advantage: Good formalism for proofs, which we illustrate by proving Theorem 1. Recall:

Theorem 1. A connected graph 「 has an oriented vertex-transitive embedding if and only if Aut $(\Gamma)$ contains a vertex-transitive subgroup $G$ with free cyclic vertex stabilisers.
(1) Fix a vertex $v$ of $\Gamma$ and define a cyclic permutation $\rho_{v}$ on the darts $D(v)$ at $v$ in such a way that $G_{\mid D(v)}<\left\langle\rho_{v}\right\rangle$.
(2) For any $g \in G$ define $\rho_{g(v)}=g \rho_{v} g^{-1}$.
(3) Show that $g(v)=h(v) \Rightarrow \rho_{g(v)}=\rho_{h(v)}$.
(9) Set $\rho=\prod_{g \in G^{*}} \rho_{g(v)}$ where $G^{*} \subset G$ is such that for each vertex $w \in \Gamma$ there is exactly one $g \in G^{*}$ with $g(v)=w$.
(3) By no. 2, passing to $\rho$ the subscripts "disappear" and hence $\rho g=g \rho$ for each $g \in G$. Note that $\lambda g=g \lambda$ is automatic.
(0) So, $G<\operatorname{Aut}(M(\lambda, \rho))$, and the map $M(\lambda, \rho)$ is vertex-transitive.

## Cayley maps

A "cheating" way of constructing vertex-transitive graphs:

## Cayley maps

A "cheating" way of constructing vertex-transitive graphs:
Given a group $G$ and a generating set $X$ of $G$ such that $X^{-1}=X$,

## Cayley maps

A "cheating" way of constructing vertex-transitive graphs:
Given a group $G$ and a generating set $X$ of $G$ such that $X^{-1}=X$, the Cayley graph $\Gamma=\operatorname{Cay}(G, X)$ has vertex set $G$ and dart set $D=\{(g, x) ; g \in G, x \in X\}$.

## Cayley maps

A "cheating" way of constructing vertex-transitive graphs:
Given a group $G$ and a generating set $X$ of $G$ such that $X^{-1}=X$, the Cayley graph $\Gamma=\operatorname{Cay}(G, X)$ has vertex set $G$ and dart set $D=\{(g, x) ; g \in G, x \in X\}$. A dart $(g, x)$ emanates from $g$ and terminates at $g x$.

## Cayley maps

A "cheating" way of constructing vertex-transitive graphs:
Given a group $G$ and a generating set $X$ of $G$ such that $X^{-1}=X$, the Cayley graph $\Gamma=\operatorname{Cay}(G, X)$ has vertex set $G$ and dart set $D=\{(g, x) ; g \in G, x \in X\}$. A dart $(g, x)$ emanates from $g$ and terminates at $g x$. Note that $\left(g x, x^{-1}\right)$ is the reverse dart to $(g, x)$; this pair forms an undirected edge of $\Gamma$.

## Cayley maps

A "cheating" way of constructing vertex-transitive graphs:
Given a group $G$ and a generating set $X$ of $G$ such that $X^{-1}=X$, the Cayley graph $\Gamma=\operatorname{Cay}(G, X)$ has vertex set $G$ and dart set $D=\{(g, x) ; g \in G, x \in X\}$. A dart $(g, x)$ emanates from $g$ and terminates at $g x$. Note that $\left(g x, x^{-1}\right)$ is the reverse dart to $(g, x)$; this pair forms an undirected edge of $\Gamma$. Therefore, $\lambda(g, x)=\left(g x, x^{-1}\right)$.

## Cayley maps

A "cheating" way of constructing vertex-transitive graphs:
Given a group $G$ and a generating set $X$ of $G$ such that $X^{-1}=X$, the Cayley graph $\Gamma=\operatorname{Cay}(G, X)$ has vertex set $G$ and dart set $D=\{(g, x) ; g \in G, x \in X\}$. A dart $(g, x)$ emanates from $g$ and terminates at $g x$. Note that $\left(g x, x^{-1}\right)$ is the reverse dart to $(g, x)$; this pair forms an undirected edge of $\Gamma$. Therefore, $\lambda(g, x)=\left(g x, x^{-1}\right)$.

Same type of "cheating" applies to constructing vertex-transitive maps:

## Cayley maps

A "cheating" way of constructing vertex-transitive graphs:
Given a group $G$ and a generating set $X$ of $G$ such that $X^{-1}=X$, the Cayley graph $\Gamma=\operatorname{Cay}(G, X)$ has vertex set $G$ and dart set $D=\{(g, x) ; g \in G, x \in X\}$. A dart $(g, x)$ emanates from $g$ and terminates at $g x$. Note that $\left(g x, x^{-1}\right)$ is the reverse dart to $(g, x)$; this pair forms an undirected edge of $\Gamma$. Therefore, $\lambda(g, x)=\left(g x, x^{-1}\right)$.

Same type of "cheating" applies to constructing vertex-transitive maps:
Let $\pi$ be any cyclic permutation of $X$. Define $\rho$ on $D$ by $\rho(g, x)=(g, \pi(x))$. The map $M=M(\lambda, \rho)$ is called a Cayley map.

## Cayley maps

A "cheating" way of constructing vertex-transitive graphs:
Given a group $G$ and a generating set $X$ of $G$ such that $X^{-1}=X$, the Cayley graph $\Gamma=\operatorname{Cay}(G, X)$ has vertex set $G$ and dart set $D=\{(g, x) ; g \in G, x \in X\}$. A dart $(g, x)$ emanates from $g$ and terminates at $g x$. Note that $\left(g x, x^{-1}\right)$ is the reverse dart to $(g, x)$; this pair forms an undirected edge of $\Gamma$. Therefore, $\lambda(g, x)=\left(g x, x^{-1}\right)$.

Same type of "cheating" applies to constructing vertex-transitive maps:
Let $\pi$ be any cyclic permutation of $X$. Define $\rho$ on $D$ by $\rho(g, x)=(g, \pi(x))$. The map $M=M(\lambda, \rho)$ is called a Cayley map.

A Cayley map can be loosely described as an oriented embedding of a Cayley graph in which the cyclic order of darts (in terms of generators) at any vertex is "the same".

## Cayley maps

Example. $K_{5}$ on a torus as a Cayley map for the group $Z_{5}$, generating set $X=\{1,2,3,4\}$, with $\pi=(1,3,4,2)$ :

## Cayley maps

Example. $K_{5}$ on a torus as a Cayley map for the group $Z_{5}$, generating set $X=\{1,2,3,4\}$, with $\pi=(1,3,4,2)$ :


## Cayley maps

Example. $K_{5}$ on a torus as a Cayley map for the group $Z_{5}$, generating set Observe that Cayley maps are $X=\{1,2,3,4\}$, with $\pi=(1,3,4,2)$ : automatically vertex-transitive.


## Cayley maps

Example. $K_{5}$ on a torus as a Cayley map for the group $Z_{5}$, generating set $X=\{1,2,3,4\}$, with $\pi=(1,3,4,2)$ :


Observe that Cayley maps are automatically vertex-transitive. Indeed, it can be checked that for any $h \in G$ the mapping $A_{h}$ defined by $A_{h}(g, x)=(h g, x)$ is in $\operatorname{Aut}(M)$.

## Cayley maps

Example. $K_{5}$ on a torus as a Cayley map for the group $Z_{5}$, generating set $X=\{1,2,3,4\}$, with $\pi=(1,3,4,2)$ :


Observe that Cayley maps are automatically vertex-transitive. Indeed, it can be checked that for any $h \in G$ the mapping $A_{h}$ defined by $A_{h}(g, x)=(h g, x)$ is in $\operatorname{Aut}(M)$.
The group $\left\{A_{h} ; h \in G\right\} \cong G$ is regular (i.e., transitive and free) on vertices of the Cayley map.

## Cayley maps

Example. $K_{5}$ on a torus as a Cayley map for the group $Z_{5}$, generating set $X=\{1,2,3,4\}$, with $\pi=(1,3,4,2)$ :


Observe that Cayley maps are automatically vertex-transitive. Indeed, it can be checked that for any $h \in G$ the mapping $A_{h}$ defined by $A_{h}(g, x)=(h g, x)$ is in $\operatorname{Aut}(M)$.
The group $\left\{A_{h} ; h \in G\right\} \cong G$ is regular (i.e., transitive and free) on vertices of the Cayley map. So, $G$ is "just big enough" to make the Cayley map vertex-transitive.

## Cayley maps

Example. $K_{5}$ on a torus as a Cayley map for the group $Z_{5}$, generating set $X=\{1,2,3,4\}$, with $\pi=(1,3,4,2)$ :


Observe that Cayley maps are automatically vertex-transitive. Indeed, it can be checked that for any $h \in G$ the mapping $A_{h}$ defined by $A_{h}(g, x)=(h g, x)$ is in $\operatorname{Aut}(M)$.
The group $\left\{A_{h} ; h \in G\right\} \cong G$ is regular (i.e., transitive and free) on vertices of the Cayley map. So, $G$ is "just big enough" to make the Cayley map vertex-transitive.

If there are no other automorphisms, such Cayley maps can be viewed as vertex-transitive maps with the lowest "level of symmetry".

## Conclusion and research problems

## Conclusion and research problems

We have encountered vertex-transitive embeddings, among which the Cayley maps had the "lowest level of symmetry".

## Conclusion and research problems

We have encountered vertex-transitive embeddings, among which the Cayley maps had the "lowest level of symmetry". Similar theory has been developed for edge-transitive maps.

## Conclusion and research problems

We have encountered vertex-transitive embeddings, among which the Cayley maps had the "lowest level of symmetry". Similar theory has been developed for edge-transitive maps. In the second lecture we will continue with considering the "highest level of symmetry" in oriented maps.

## Conclusion and research problems

We have encountered vertex-transitive embeddings, among which the Cayley maps had the "lowest level of symmetry". Similar theory has been developed for edge-transitive maps. In the second lecture we will continue with considering the "highest level of symmetry" in oriented maps. PROBLEMS

## Conclusion and research problems

We have encountered vertex-transitive embeddings, among which the Cayley maps had the "lowest level of symmetry". Similar theory has been developed for edge-transitive maps. In the second lecture we will continue with considering the "highest level of symmetry" in oriented maps.

PROBLEMS
Warm-up: Find an infinite class of graphs Г such that Aut(Г) has a vertex-transitive subgroup with cyclic vertex stabilisers which are not free in their action on darts at a vertex.

## Conclusion and research problems

We have encountered vertex-transitive embeddings, among which the Cayley maps had the "lowest level of symmetry". Similar theory has been developed for edge-transitive maps. In the second lecture we will continue with considering the "highest level of symmetry" in oriented maps.

## PROBLEMS

Warm-up: Find an infinite class of graphs $\Gamma$ such that Aut(Г) has a vertex-transitive subgroup with cyclic vertex stabilisers which are not free in their action on darts at a vertex.

Potential paper: Investigate spectra of genera of surfaces admitting oriented vertex-transitive embeddings of graphs. For which "interesting" graphs is such a spectrum a non-trivial interval?

## Conclusion and research problems

We have encountered vertex-transitive embeddings, among which the Cayley maps had the "lowest level of symmetry". Similar theory has been developed for edge-transitive maps. In the second lecture we will continue with considering the "highest level of symmetry" in oriented maps.

## PROBLEMS

Warm-up: Find an infinite class of graphs Г such that Aut(Г) has a vertex-transitive subgroup with cyclic vertex stabilisers which are not free in their action on darts at a vertex.

Potential paper: Investigate spectra of genera of surfaces admitting oriented vertex-transitive embeddings of graphs. For which "interesting" graphs is such a spectrum a non-trivial interval?

Potential thesis: Develop a theory for (oriented as well as unoriented) face-transitive embeddings of graphs.

