$\left(v_{3}\right)$ configurations - Lecture 3

Marko Boben

Discrete Mathematics $2+$ Configurations

Definition

An Incidence structure is a triple $\mathcal{S}=(P, \mathcal{B}, I)$ where P and \mathcal{B} are disjoint sets and I is a binary relation between P and B, i.e. $I \subseteq P \times \mathcal{B}$.

The elements of P are called points, those of \mathcal{B} blocks and those of I flags.

Inctead of $(n, B) \subset /$ we write p / B and use such geometric language as "the point p lies in the block B ", " B passes through p ", " p and B are incident" etc.

Definition

An Incidence structure is a triple $\mathcal{S}=(P, \mathcal{B}, I)$ where P and \mathcal{B} are disjoint sets and I is a binary relation between P and B, i.e. $I \subseteq P \times \mathcal{B}$.

The elements of P are called points, those of \mathcal{B} blocks and those of Iflags.

Instead of $(p, B) \in /$ we write p / B and use such geometric language as "the point p lies in the block B ", " B passes through $p ", " p$ and B are incident" etc.

Definition

An Incidence structure is a triple $\mathcal{S}=(P, \mathcal{B}, I)$ where P and \mathcal{B} are disjoint sets and I is a binary relation between P and B, i.e. $I \subseteq P \times \mathcal{B}$.

The elements of P are called points, those of \mathcal{B} blocks and those of Iflags.

Instead of $(p, B) \in I$ we write p / B and use such geometric language as "the point p lies in the block B ", " B passes through $p ", " p$ and B are incident" etc.

Definitions

Examples

Example

Incidence structure 1.

$$
\begin{aligned}
& P=\{1,2,3,4,5\} \\
& \mathcal{B}=\{\{1,2,3,4\},\{1,5\},\{2,5\},\{3,5\},\{4,5\}\}
\end{aligned}
$$

Example

Incidence structure 2 (Fano plane)

$$
\begin{aligned}
P= & \{0,1,2,3,4,5,6\} \\
\mathcal{B}= & \{\{0,1,3\},\{1,2,4\},\{2,3,5\},\{3,4,6\}, \\
& \{4,5,0\},\{5,6,1\},\{6,0,2\}\}
\end{aligned}
$$

Definitions

Examples

Example

Incidence structure 1.

$$
\begin{aligned}
& P=\{1,2,3,4,5\} \\
& \mathcal{B}=\{\{1,2,3,4\},\{1,5\},\{2,5\},\{3,5\},\{4,5\}\}
\end{aligned}
$$

Example

Incidence structure 2 (Fano plane)

$$
\begin{aligned}
P= & \{0,1,2,3,4,5,6\} \\
\mathcal{B}= & \{\{0,1,3\},\{1,2,4\},\{2,3,5\},\{3,4,6\}, \\
& \{4,5,0\},\{5,6,1\},\{6,0,2\}\}
\end{aligned}
$$

Definitions

Levi graphs

Connection between incidence structures and graphs.

Definition

Incidence graph or Levi graph $G(\mathcal{C})$ of an incidence structure
$\mathcal{S}=(P, \mathcal{B}, I)$ is

- bipartite graph with
- v "black" vertices (representing points of \mathcal{S}),
- b"white" vertices (representing blocks of \mathcal{S}),
- an edge joining two vertices if and only if the corresponding point and line are incident in \mathcal{S}.

Definitions

Levi graphs

Example

Fano plane and its incidence graph (Heawood graph)

Definitions

t-Designs

A well known family of incidence structures are t-designs.
Definition
Let v, k, t, λ be integers such that $v \geq k \geq t \geq 0$ and $\lambda \geq 1$. A
t-design with blocks of size k and index λ is an incidence
structure $\mathcal{D}=(P, \mathcal{B}, I)$ with the following properties
(1) $|P|=v$
(2) $|B|=k$ for each $B \in \mathcal{B}$
(3) For each t-subset (i.e. subset of size t) T of P there are exactly λ blocks containing T.
Notation: $t-(v, k, \lambda)$ or $S_{\lambda}(t, k, v)$.

Definitions
 t-Designs

A well known family of incidence structures are t-designs.

Definition

Let v, k, t, λ be integers such that $v \geq k \geq t \geq 0$ and $\lambda \geq 1$. A t-design with blocks of size k and index λ is an incidence structure $\mathcal{D}=(P, \mathcal{B}, I)$ with the following properties
(2) $|B|=k$ for each $B \in \mathcal{B}$
(3) For each t-subset (i.e. subset of size t) T of P there are exactly λ blocks containing T.

Definitions
 t-Designs

A well known family of incidence structures are t-designs.

Definition

Let v, k, t, λ be integers such that $v \geq k \geq t \geq 0$ and $\lambda \geq 1$. A t-design with blocks of size k and index λ is an incidence structure $\mathcal{D}=(P, \mathcal{B}, I)$ with the following properties
(1) $|P|=v$
(2) $|B|=k$ for each $B \in \mathcal{B}$
(3) For each t-subset (i.e. subset of size t) T of P there are exactly λ blocks containing T.

Definitions
 t-Designs

A well known family of incidence structures are t-designs.

Definition

Let v, k, t, λ be integers such that $v \geq k \geq t \geq 0$ and $\lambda \geq 1$. A t-design with blocks of size k and index λ is an incidence structure $\mathcal{D}=(P, \mathcal{B}, I)$ with the following properties
(1) $|P|=v$
(2) $|B|=k$ for each $B \in \mathcal{B}$
(3) For each t-subset (i.e. subset of size t) T of P there are exactly λ blocks containing T.

Definitions
 t-Designs

A well known family of incidence structures are t-designs.

Definition

Let v, k, t, λ be integers such that $v \geq k \geq t \geq 0$ and $\lambda \geq 1$. A t-design with blocks of size k and index λ is an incidence structure $\mathcal{D}=(P, \mathcal{B}, I)$ with the following properties
(1) $|P|=v$
(2) $|B|=k$ for each $B \in \mathcal{B}$
(3) For each t-subset (i.e. subset of size t) T of P there are exactly λ blocks containing T.

Definitions
 t-Designs

A well known family of incidence structures are t-designs.

Definition

Let v, k, t, λ be integers such that $v \geq k \geq t \geq 0$ and $\lambda \geq 1$. A t-design with blocks of size k and index λ is an incidence structure $\mathcal{D}=(P, \mathcal{B}, I)$ with the following properties
(1) $|P|=v$
(2) $|B|=k$ for each $B \in \mathcal{B}$
(3) For each t-subset (i.e. subset of size t) T of P there are exactly λ blocks containing T.
Notation: $t-(v, k, \lambda)$ or $S_{\lambda}(t, k, v)$.

Definitions

t-Designs - example

Example

Fano plane is $2-(7,3,1)$ design.

> In general, a $2-(v, k, \lambda)$ design with $\lambda=1$ and $v=|P|=|\mathcal{B}|$ (if such exists) is called a (finite) projective plane of order $k-1$.

> Every $2-\left(n^{2}, n, 1\right)$ design (if exists) is called a (finite) affine plane.

Example

Fano plane is $2-(7,3,1)$ design.

In general, a $2-(v, k, \lambda)$ design with $\lambda=1$ and $v=|P|=|\mathcal{B}|$ (if such exists) is called a (finite) projective plane of order $k-1$.

Every $2-\left(n^{2}, n, 1\right)$ design (if exists) is called a (finite) affine plane.

Example

Fano plane is $2-(7,3,1)$ design.

In general, a $2-(v, k, \lambda)$ design with $\lambda=1$ and $v=|P|=|\mathcal{B}|$ (if such exists) is called a (finite) projective plane of order $k-1$.

Every $2-\left(n^{2}, n, 1\right)$ design (if exists) is called a (finite) affine plane.

Configurations
 Definition

Another example of incidence structures are configurations.

Definition

A (combinatorial) configuration (v_{r}, b_{k}) is an incidence structure of points and lines (blocks) with the following properties.
(1) There are v points and b lines.

2 There are r lines through each point and k points on each line.
(3) Two different points are connected by at most one line and two lines intersect in at most one point.

Configurations with $v=b$ (and hence $r=k$) are called symmetric and denoted by $\left(v_{r}\right)$.

Configurations
 Definition

Another example of incidence structures are configurations.

Definition

A (combinatorial) configuration (v_{r}, b_{k}) is an incidence structure of points and lines (blocks) with the following properties.
(1) There are v points and b lines.
(2) There are r lines through each point and k points on each line.
B Two different points are connected by at most one line and two lines intersect in at most one point.

Configurations with $v=b$ (and hence $r=k$) are called symmetric and denoted by $\left(v_{r}\right)$.

Configurations
 Definition

Another example of incidence structures are configurations.

Definition

A (combinatorial) configuration (v_{r}, b_{k}) is an incidence structure of points and lines (blocks) with the following properties.
(1) There are v points and b lines.
(2) There are r lines through each point and k points on each line.
(3) Two different points are connected by at most one line and two lines intersect in at most one point.

Configurations with $v=b$ (and hence $r=k$) are called symmetric and denoted by $\left(v_{r}\right)$.

Configurations
 Definition

Another example of incidence structures are configurations.

Definition

A (combinatorial) configuration (v_{r}, b_{k}) is an incidence structure of points and lines (blocks) with the following properties.
(1) There are v points and b lines.
(2) There are r lines through each point and k points on each line.
(3) Two different points are connected by at most one line and two lines intersect in at most one point.

Configurations with $v=b$ (and hence $r=k$) are called
symmetric and denoted by $\left(v_{r}\right)$.

Configurations
 Definition

Another example of incidence structures are configurations.

Definition

A (combinatorial) configuration (v_{r}, b_{k}) is an incidence structure of points and lines (blocks) with the following properties.
(1) There are v points and b lines.
(2) There are r lines through each point and k points on each line.
(3) Two different points are connected by at most one line and two lines intersect in at most one point.

Configurations with $v=b$ (and hence $r=k$) are called symmetric and denoted by $\left(v_{r}\right)$.

Configurations
 Definition

Proposition

If there exists a $\left(v_{r}, b_{k}\right)$ configuration, then

$$
v r=b k \quad \text { and } \quad v \geq r(k-1)+1
$$

Proof. For the first equality count the flags (edges of the Levi graph) in two ways. For the second equality take one point and count all points on incident lines.

Remark

The conditions above are not sufficient. For example:

- they are sufficient for $\left(v_{3}\right)$ configurations (exist for $v \geq 7$)
- for $\left(v_{r}, b_{3}\right)$ configurations (exist iff $v \geq 2 r+1$ and $v r=3 b$).
- there is no $\left(43_{7}\right)$ configuration although $7(7-1)+1=43$.

Configurations

Examples

Example

Fano plane or projective plane of order 2 is the only $\left(7_{3}\right)$ configuration.

Example

Pappus configuration - one of three $\left(9_{3}\right)$ configurations.

Configurations
 Examples

Example

Each 2-design with $\lambda=1, S_{1}(2, k, v)$, is a $\left(v_{r}, b_{k}\right)$ configuration with

$$
r=\ldots \quad \text { and } \quad b=\ldots
$$

Example

Projective plane of order k is $\left(\left(k^{2}+k+1\right)_{k+1}\right)$ configuration.

Configurations
 Examples

Definition

Let $a, b \in \mathbb{Z}_{v}, a \neq b, a, b \neq 0$ and
$\mathcal{B}=\{\{0, a, b\},\{1, a+1, b+1\}, \ldots,\{v-1, a+v-1, b+v-1\}\}$.
If the incidence structure $\mathcal{C}=\left(\mathbb{Z}_{v}, \mathcal{B}, \in\right)$ is a $\left(v_{3}\right)$ configuration, then we call it a cyclic (v_{3}) configuration with base block $B=\{0, a, b\}$ and denote it with $\operatorname{Cyc}(v, B)$.

Example

Fano plane is $\operatorname{Cyc}(7,\{0,1,3\})$.

Configurations
 Levi graphs

The characterization of configurations in terms of their incidence graphs:

Proposition

An incidence structure is a $\left(v_{r}, b_{k}\right)$ configuration if and only if its incidence graph is (r, k)-regular and has girth ≥ 6. ($\operatorname{girth}(G)=$ the length of the shortest cycle in G.)

Two lines
intersecting in two points

4-cycle

Configurations

Levi graphs

Remark

Every r-regular bipartite graph with girth at least 6 gives one $\left(v_{r}\right)$ configuration or two dual $\left(v_{r}\right)$ configurations.

Example

Levi graph of $\operatorname{Cyc}(v,\{0, a, b\})$ is a \mathbb{Z}_{v}-covering graph over

Configurations

- Combinatorial construction of non-isomorphic (v_{r}, b_{k}) configurations.
- construction of (r, k)-regular bipartite graphs with girth ≥ 6.
- iterative construction from smaller configurations (for $\left(v_{3}\right)$ configurations).
- Realization of configurations in Euclidean plane with "points" and "lines".

v	a	b	c	d	e
7	1	1	1	1	0
8	1	1	1	1	0
9	3	3	2	1	0
10	10	10	2	1	0
11	31	25	1	1	0
12	229	95	4	3	0
13	2036	366	2	2	0
14	21399	1433	3	3	1
15	245342	5802	5	4	1
16	3004881	24105	6	4	4
17	38904499	102479	2	2	13
18	530452205	445577	9	5	47
19	7640941062	1992044	3	3	290

In the previous table:
$a=$ number of all configurations,
$b=$ number of self-dual configurations,
$c=$ number of point-transitive configurations,
$d=$ number of cyclic configurations,
$e=$ number of non-connected configurations.

Small $\left(v_{3}\right)$ configurations

Fano configuration

124, 235, 346, 457, 561, 672, 713
or Fano plane is projective plane of order 2 and therefore the smallest (v_{3}) configuration. Its Levi graph is 6-cage, the smallest cubic graph of girth 6 - Heawood graph. It is also cyclic configuration $\operatorname{Cyc}(7,\{0,1,3\})$.

Small $\left(v_{3}\right)$ configurations

Möbius-Kantor configuration

124, 235, 346, 457, 568, 671, 782, 813,
$\operatorname{Cyc}(8,\{0,1,3\})$, is the only $\left(8_{3}\right)$ configuration. Its levi graph is Generalized Petersen graph $G(8,3)$.
It can be constructed from the affine plane of order 3 by removing one point and all incident lines.

Small $\left(v_{3}\right)$ configurations

$\left(9_{3}\right)$ configurations
Pappus configuration
127, 149, 168, 238, 259, 347, 369, 458, 567 represents Pappus theorem:
Let x, y, z and $x^{\prime}, y^{\prime}, z^{\prime}$ be two sets of three different collinear points on two different lines in the plane (such that none of these points lies on the intersection of both lines). Then the points $u=x y^{\prime} \cap x^{\prime} y, v=x z^{\prime} \cap x^{\prime} z, w=y z^{\prime} \cap y^{\prime} z$ are collinear.

Small $\left(v_{3}\right)$ configurations

Levi graph of the Pappus configuration can be obtained from $G(6,2)$ by subdividing two triangles and connecting the new points with 3 new edges. This can be done in three different ways (to get a bipartite graph). Each of them gives a Levi graph of one of the three $\left(9_{3}\right)$ configurations.

Small $\left(v_{3}\right)$ configurations

$\left(9_{3}\right)$ configurations

Configuration $\left(9_{3}\right)_{2}$ is given by the lines

$$
123,145,167,246,258,349,378,579,689 .
$$

Configuration $\left(9_{3}\right)_{3}$ is the cyclic configuration $\operatorname{Cyc}(9,\{0,1,3\})$.

Small $\left(v_{3}\right)$ configurations

$\left(10_{3}\right)$ configurations

Desargues configuration
123, 145, 167, 248, 269, 358, 379, 460, 570, 890
Resembles the Desargues theorem: Let $c, x, y, z, x^{\prime}, y^{\prime}, z^{\prime}$ be different points where $c, x, x^{\prime}, c, y, y^{\prime}$ and c, z, z^{\prime} are collinear, x, y, z and $x^{\prime}, y^{\prime}, z^{\prime}$ determine two triangles. It follows that $u=x y \cap x^{\prime} y^{\prime}, v=x z \cap x^{\prime} z^{\prime}, w=y z \cap y^{\prime} z^{\prime}$ are collinear. Levi graph is $G(10,3)$.

Small $\left(v_{3}\right)$ configurations

$\left(10_{3}\right)$ configurations

The non-realizable $\left(10_{3}\right)$ configuration
123, 145, 167, 246, 289, 358, 379, 480, 570, 690.
Levi graph of the configuration $\left(10_{3}\right)_{5}$ can be obtained from $G(10,3)$ by removing two antipodal edges $u v$ in $u^{\prime} v^{\prime}$ and replacing them with $u v^{\prime}$ and $u^{\prime} v$ (in such way that the graph remains bipartite).

$\left(v_{3}\right)$ configurations and cages

Definitions

Definition

The smallest cubic graph with girth g is called a g-cage.

Example

- The only 3 -cage is K_{4},
- The only 4-cage is $K_{3,3}$,
- The only 5 -cage is Petersen graph $G(5,2)$,
- The only 6-cage is Heawood graph,
- One 7-cage (McGee graph),
- One 8-cage (Tutte graph),
- 18 9-cages,
- 3 10-cages, 1 11-cage, 1 12-cage,
- ?

$\left(v_{3}\right)$ configurations and cages

Definitions

Definition

An n-gon in a configuration is a sequence

$$
p_{1} B_{1} p_{2} B_{2} \ldots p_{n} B_{n}
$$

of n pairwise different points $p_{i} \in P$ and n pairwise different blocks $B_{j} \in \mathcal{B}$ such that $\left(p_{i}, B_{i}\right) \in I,\left(p_{i}, B_{i-1}\right) \in I$, and $\left(p_{1}, B_{i}\right) \in I$.

The existence of an n-gon in the configuration \mathcal{C} is equivalent to the existence of cycle of length $2 n$ in Levi graph of \mathcal{C}.

$\left(v_{3}\right)$ configurations and cages

Definitions

Definition

A configuration \mathcal{C} is n-gonal if the Levi graph of \mathcal{C} has girth $2 n$, i.e. it contains no m-gon for $m<n$.

If there is a bipartite $2 n$-cage, then it is the Levi graph of the smallest n-gonal configuration(s).

Conjecture

All $2 n$-cages are bipartite graphs.

$\left(v_{3}\right)$ configurations and cages

Examples

Heawood graph \Longrightarrow Fano plane
Tutte cage (30 vertices) \Longrightarrow Cremona-Richmond (153) cfg.

(Tutte cage is \mathbb{Z}_{5} covering graph over the graph on the left)

$\left(v_{3}\right)$ configurations and cages

Examples

The $1^{\text {st }} 10$-cage (Balaban cage) on 70 vertices \Longrightarrow The $1^{\text {st }}$ 5-gonal (35_{3}) cfg.

$\left(v_{3}\right)$ configurations and cages

Examples

The $2^{\text {nd }} 10$-cage \Longrightarrow Two 5-gonal $\left(35_{3}\right)$ cfgs.

$\left(v_{3}\right)$ configurations and cages

Examples

The $3^{\text {nd }} 10$-cage $\quad \Longrightarrow \quad$ Two 5-gonal $\left(35_{3}\right)$ cfgs.

$\left(v_{3}\right)$ configurations and cages

Examples

12-cage (126 vertices) \Longrightarrow Two 6-gonal $\left(63_{3}\right)$ cfgs.

Martinetti's reduction of $\left(v_{3}\right)$ configurations

Introduction

Martinetti's reduction of line A and point x :

$\left(v_{3}\right)$ configuration $\rightarrow\left((v-1)_{3}\right)$ configurations, if the reduced structure is a configuration.

Definition

If a $\left(v_{3}\right)$ configuration \mathcal{C} does not admit reduction of any line, then \mathcal{C} is called irreducible configuration. Otherwise it is reducible.

Martinetti's reduction of $\left(v_{3}\right)$ configurations

Introduction

The same story on Levi graphs (we will call them (v_{3}) graphs)...

Definition

If a $\left(v_{3}\right)$-graph G does not admit reduction of any edge such that the resulting graph is again a $\left(v_{3}\right)$-graph, then G is called irreducible. Otherwise G is reducible.

Martinetti's reduction of $\left(v_{3}\right)$ configurations

 IntroductionThe smallest $\left(v_{3}\right)$-graph, the Heawood graph, is clearly irreducible.

Question

Are there other irreducible $\left(v_{3}\right)$-graphs or is every $\left(v_{3}\right)$-graph reducible to the Heawood graph?

Yes, there are other irreducible (v_{3})-graphs.

Martinetti's reduction of $\left(v_{3}\right)$ configurations

The first family

Proposition

Levi graphs of cyclic configurations $\operatorname{Cyc}(n,\{0,1,3\}), n \geq 7$, are irreducible (v_{3})-graphs on $2 n$ vertices. (We will denote them by $C(n)$.)

Another picture:

Martinetti's reduction of $\left(v_{3}\right)$ configurations

The second family

Family 2.

Consider a graph $D(n)$ on $20 n$ vertices which is constructed from n segments in the following way

Vertices a_{1}, b_{1}, c_{1} from the first segement can be connected with vertices u_{n}, v_{n}, w_{n} from the last segment in 6 ways. But we only get 3 non-isomorphics graphs. We denote them by $D_{1}(n)$, $D_{2}(n)$ and $D_{3}(n)$.

Martinetti's reduction of $\left(v_{3}\right)$ configurations

The second family

Proposition

Graphs $D_{1}(n), D_{2}(n), D_{3}(n), n \geq 1$ are irreducible (v_{3})-graphs on $20 n$ vertices.

Graph $D_{1}(n)$ is \mathbb{Z}_{n}-covering graph over

$D_{1}(1)=G P(10,3)$ is a graph of the Desargues configuration.

Martinetti's reduction of $\left(v_{3}\right)$ configurations

The Pappus graph

Proposition

The Pappus graph (incidence graph of the Pappus configuration) is irreducible (v_{3})-graph on 18 vertices.

Martinetti's reduction of $\left(v_{3}\right)$ configurations

Theorem

The only irreducible (v_{3})-graphs are

- graphs $C(n), n \geq 7$ (Family 1)
- graphs $D_{1}(n), D_{2}(n), D_{3}(n), n \geq 1$ (Family 2)
- The Pappus graph.

Remark

In the original paper of Martinetti (and in the citations of this result) graphs $D_{2}(n), D_{3}(n)$ are missing for $n \geq 2$! (configurations arising from these graphs.)

Martinetti's reduction of $\left(v_{3}\right)$ configurations

Sketch of the proof

Lemma

$A\left(v_{3}\right)$-graph G is irreducible if and only if for each edge e of G one of the following is true:

- Edge e and one of its neighboring edges are in the intersection of two 6-cycles.
- There exists a path efg which is the intersection of two 6-cycles.

Martinetti's reduction of $\left(v_{3}\right)$ configurations

Sketch of the proof

Case 1: We assume that in an irreducible (v_{3})-graph there exist no 6 -cycles which intersect in a path of length 3.
From an initial graph

we can construct, by adding vertices and edges, the Pappus graph and graphs $D_{i}(n)$.

Martinetti's reduction of (v_{3}) configurations

Sketch of the proof

Case 2: We assume that there exist two 6-cycles intersecting in a path of length 3.
From an initial graph

we can construct, by adding vertices and edges, graphs $C(n)$.

Examples

Fano plane

