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Today’s Topics

We will define several types of realizations of
configurations (in the Euclidean plane)

We will present several methods (algorithms) one can use
to realize configurations in the plane.

We will define polycyclic configurations and discuss
realizations of some special types of polycyclic
configurations.
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Realizations
Example

Examples of configurations realized in the plane (i.e. geometric
configurations)

(93) (244) (124, 163)
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Some theory about realizations
Realization of a configuration

Definition
A realization of a configuration C with point-set C and line-set L
in the plane R2 is an 1-to-1 mapping ϕ which maps the points
of C to the points of R2, the lines of C to the lines of R2 and
preserves incidence, i.e.

p is incident with L in C =⇒ ϕ(p) is incident with ϕ(L) in R2

for each p ∈ C and L ∈ L.

A realization is called strong if

ϕ(p) is incident with ϕ(L) in R2 =⇒ p is incident with L in C

for each p ∈ C and L ∈ L.
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Some theory about realizations
Examples

Examples of a strong realization, and of a weak realization (a
realization which is not strong).

1 2 3

4 5 6

7

8

9
10

11

12

13

14

15

16

Strong realization of Pappus
configuration

Weak realization of a (163)
configuration.

(Pappus theorem!)
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Some theory about realizations
Not strongly realizable configurations

1 2 3

4 5 6

7

8

9
10

11

12

13

14

15

16

1 2 3

4
5

6

7

8

9

10

11

12
13

14

15

16

Strongly non-realizable
configuration C

Strongly realizable
incidence structure

(C without line {4, 5, 6})
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Some theory about realizations
Not strongly realizable configurations

There exist arbitrary large strongly non-realizable
configurations. . .
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Algorithms
What do we want?

Considering a reprezentation of configurations in the plane we
try to find

a drawing with “as little curved lines as possible” (i.e. a
realization of an incidence structure obtained from that
configuration by “not removing too many lines”);
a realization;
a “nice” drawing or realization (e.g. with geometric
symmetries reflecting some combinatorial symmetries);
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Algorithms
Steinitz method

Theorem
In 1894 E. Steinitz proved a theorem which says that it is
possible to draw each connected (v3) configuration in
Euclidean plane with at most one curved line.

He uses an iterative method to prove his theorem:
He successively draws points and lines such that he is always
able to construct a point as an arbitrary point on some (already
constructed) line or a point which is an itersection of two lines /
a line through one or two some already constructed lines.
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Algorithms
Steinitz method – a formalization

We will try to present Steinitz method using incidence or Levi
graphs.

A Levi graph G(C) of a (vr , bk ) configuration C is a bipartite
graph

with v black vertices representing points of C,
b white vetrices representing lines of C;
there is an edge between black and white vertex iff the
corresponding point and line are incident.

(Levi graphs of configurations have girth ≥ 6.)
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Algorithms
Steinitz method – a formalization

Order of construction can be given by a directed spanning
subgraph H of Levi graph G which

does not have (directed) cycles,
outdegH(v) ≤ 2.

An edge (u, v) ∈ E(H) (and edge “from u to v ”) means that the
object u (either point or line) is constructed from the object v .
The number of actually “constructed” (“realized”) lines is the
number of vertices w in H representing lines (white vertices) for
which

outdegH(w) + indegH(w) = degG(w) (*)
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Algorithms
Example

Heawood graph – Levi graph of Fano plane
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Algorithms
Example

Steinitz theorem says that in the case of connected (v3)
configurations, only one line “violates” the condition (*).

Sketch of the (original) proof:
Every bipartite cubic graph contains a 2-factor (i.e. one can
find a decomposition of the graph into ` disjoint cycles,
covering all vertices).
Next, order the cycles (2-factors) in the following way:

choose the first cycle C1 arbitrarily,
each next cycle Ci must have an edge ei with one
end-vertex, vi , in Ci and the other one, wj in Cj , j < i (this
can be done since the graph is connected).
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Algorithms
. . .

Direct edges on each cycle such that vi is the “last” vertex
on that cycle (on v1 take an arbitrary vertex for the “last”
one, v1).
Direct edges ei from wj to vi .
other edges (except for one edge incident to v1) should be
directed s.t. the end vertex belongs to the same or to one
of the next cycles.

This construction gives the construction subgraph missing only
one edge of the original graph.

It follows that only one line can not be constructed.
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Algorithms
. . .

Alternative construction:

Take a distance partition of the levi graph starting from one
(line) vertex v , i.e. partition vertices into disjoint sets
D0 = {v}, D1, . . . , Dk . such that dist(v , u) = i for each
u ∈ Di .
Direct an edge between Di and Di+1 from the vertex in Di
to the vertex in Di+1 (This works for all edges except for
one adjacent to v )
This gives an construction subraph leaving only one line
(the one represented by v ) “unconstructed”.
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Algorithms
. . .

An approach in Computational Synthetic Geometry by J.
Bokowski and B. Sturmfels works similarly, it just gives a
different order of construction (a different directed sub-graph of
the Levi graph).

If, for some vertex v ∈ H (directed spanning subgraph of the
configuration), we have outdegH(v) < 2, it means that we have
one or two free parameters.

For the lines which we were not able to realize, we get
additional conditions in the sense of algebraic equation(s).
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Algorithms
Examples

In Mathematica. . .

Marko Boben Realizations of configurations



Algorithms
Other approaches

We can use the following “naïve” algorithm:
1 Place the points of the configuration C in the plane

randomly;
using an algorithm described above (leaving some lines
“curved”).

2 Select points which should be on the same line L.
3 Place a line L̂ through these points s.t. the sum of the

squares of distances between a point an L̂ is minimal.
4 Project the points to L̂.
5 Repeat step 2 until all lines of C are “approximately”

straight.
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Algorithms
Iterative algorithm

−→
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Algorithms
Iterative algorithm

In Mathematica. . .
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