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University of Ljubljana
alen.orbanic@fmf.uni-lj.si

Contents

1 Basic definitions 3
1.1 The triangulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Flags and incidences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 The involutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Walks and words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Review of basics on actions 3
2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Basic action properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Action morphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.4 Transitive actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.4.1 Interpretation of the lemma . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.5 The core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Algebraic definition of a map and generalizations 5
3.1 Rooted maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Comments on rooted maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3.2.1 Gluing according to the action . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2.2 Surfaces with boundary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2.3 Vertices, edges, faces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2.4 Orientability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Quotients and covers of maps 7
4.1 Map morphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2 Canonical representation of a rooted map . . . . . . . . . . . . . . . . . . . . . . 7
4.3 Quotients and stabilizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.4 Isomorphism classes of rooted maps and subgroups of F . . . . . . . . . . . . . . 8
4.5 Classification of all quotients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

4.5.1 Calculation issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.6 The correspondence theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.7 Classification of quotients through the monodromy group . . . . . . . . . . . . . 9
4.8 Application of the theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.9 Parallel product . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.9.1 Parallel product on isomorphism classes . . . . . . . . . . . . . . . . . . . 13



5 Automorphisms of maps 13
5.1 Semi-regularity of Aut(M) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.2 The automorphism naming convention . . . . . . . . . . . . . . . . . . . . . . . . 13
5.3 (Non)categorical remark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.4 Characterization of automorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.5 Intuitive interpretation of the normalizer . . . . . . . . . . . . . . . . . . . . . . . 14

5.5.1 Seems like hard homework, but it is not ... . . . . . . . . . . . . . . . . . 14
5.6 Representation of the action of Aut(M) . . . . . . . . . . . . . . . . . . . . . . . 15
5.7 Representing Aut(M) with right actions . . . . . . . . . . . . . . . . . . . . . . . 15
5.8 About symmetries, regular maps . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6 Map operations 16
6.1 Dual, Petrie dual . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

7 Generalizations of rooted maps 19



1 Basic definitions

A finite map on a closed compact surface S is an embedding of a finite connected graph G on
S, where S \G consists of connected parts homeomorphic to disks (faces).

1.1 The triangulations

Each such map can be triangulated in the following way. By subdividing each edge and by
putting one point in each face we obtain additional vertices called edge-centers and face-centers,
respectively. By embedding additional edges we connect each face center with the original
vertices and edge centers around the face. This gives us a triangulation of the map where each
triangle has as corners a vertex, an edge center and a face center. Therefore, each triangle can
be uniquely labeled by the triple (v, e, f) of the incident vertex v, the edge e and the face f .
The triangles are called flags.

1.2 Flags and incidences

Since we have a compact closed surface, each such triangle is incident to three other triangles
over the sides. The three incident triangles differ in exactly one component of (v, e, f). The
incidences of triangles can be encoded into three involutions on flags, s0, s1 and s2, where si

changes the i-th component of (v, e, f) (counting on from 0) in order to obtain the corresponding
incident flag. Each such incidence is called a si-incidence and the corresponding two flags are
si-incident. By taking flags as vertices and si incidences as edges we obtain a connected cubic
3-colored graph (each type of incidence one color) called a flag graph.

1.3 The involutions

Note that in such a setting, the three involutions labeled by s0, s1 and s2 are fixed-point-free
involutions, where (due to edges) s0 and s2 commute and the product s0s2 is also a fixed-point-
free involution (since a fixed point would imply a semi-edge). The group 〈s0, s1, s2〉 is a transitive
permutation group (since the map is connected), a subgroup of the symmetric group on flags.

1.4 Walks and words

Consider a flag Φ and a word in labels s0, s1, s2. In a natural way, the pair represents the
walk in the flag graph starting in Φ. In any case, the walks s2

i , i = 0, 1, 2, and (s0s2)2 starting
from any flag bring us back to the initial flag. Therefore we decide to reduce all such walks
to trivial walk. Then the set of all reduced words in alphabet s0, s1 and s2 for the operation
concatenation is exactly the finitely presented group

F = 〈s0, s1, s2 | s2
0, s

2
1, s

2
2, (s0s2)2〉.

Note that we (ab)use the labels si in two ways, as letters of an alphabet (and generators of F )
and as labels for the three involutions. Observe that the mapping assigining the label si ∈ F to
the corresponding permutation on flags extends to the group epimorphism ϕ : F → 〈s0, s1, s2〉.
2 Review of basics on actions

For a finite set Z, denote by SymR(Z) the symmetric group of permutations on the set Z, where
the permutations are composed from the left to the right. Similarly, denote by SymL(Z) the
set of permutations on Z, where the permutations are composed as functions, from the right to



the left. Obviously, the groups are isomorphic, but the distinction is in how permutations are
applied on an element of Z, in the first case from the right and in the second from the left. In
what follows we will define right actions (left actions have analogous definition). The application
of g ∈ SymR(Z) on z ∈ Z will be denoted by zg.

2.1 Definition

There are two equivalent definitions of right actions.

Definition 1 (I) A right action of a group G on the set Z is an operation · : Z × G → Z
defined by a homomorphism f : G → SymR(Z), where for each g ∈ G and z ∈ Z, z · g = zf(g).
The homomorphism f is called the action homomorphism. The image f(G) is called the image
of the action.

Definition 2 (II) A right action of a group G on the set Z is an operation · : Z×G → Z such
that for each z ∈ Z and g, h ∈ G

(1) z · 1 = z, and

(2) (z · g) · h = z · (gh).

Homework 1 Show that the definitions (1) and (2) are equivalent.

We intend to use right actions only, and we will call them simply “actions”. An action is
often denoted by a triple (Z, G, ·), or when the operation is clear from the context, just (Z, G).
Often we omit writing the operation and instead of z · g we write zg.

2.2 Basic action properties

An action (Z, G) is transitive, if for every z, z′ ∈ Z there exists g ∈ G, such that zg = z′. A
stabilizer of z ∈ Z of the action is

StabG(z) = {g ∈ G | zg = z}.
Note that StabG(z) is a subgroup of G. An action is semi-regular if all the stabilizers are trivial.
If a semi-regular action is in addition transitive, it is called regular action.

The kernel of the action is Z(G) = {g ∈ G | zg = z for all z ∈ Z} and equals the intersection
of all the stabilizers. Considering the first definition of a right group action (1) the kernel is
exactly the kernel of the homomorphism f in the definition. An action is faithful if the kernel
Z(G) is trivial.

2.3 Action morphisms

An action morphism of two actions (Z, G, ·) and (Z ′, G′, ∗) is a pair of mappings (p, q), p : Z → Z ′

and q : G → G′ respecting both actions. That is, for each z ∈ Z and g ∈ G

p(z · g) = p(z) ∗ q(g).

Our particular interest will be in action epimorphisms, where both p and q are surjective, and
action isomorphisms, where both p and q are bijections.

Example 3 Let (Z, G) be a faithful action and f : G → SymR(Z) be the action homomorphism.
Since ker f = {1}, f(G) is an isomorphic image of G. The pair (Id, f) : (Z,G) → (Z, f(G)) is
the action isomorphism. The group G is said to be permutation isomorphic to f(G).



2.4 Transitive actions

In what follows we will focus on transitive actions. The natural transitive actions of a group
G are obtained by taking any subgroup N 6 G and considering the action of G on the factor
set G/N . The following two lemmas tell us that each transitive action is isomorphic to some
natural transitive action.

Lemma 4 Let (Z, G) be a transitive action, z ∈ Z and N = StabG(z). Then (Z, G) is isomor-
phic to the natural action of G on the cosets of N , namely (G/N, G). The action isomorphism
is (p, Id), where Id : G → G is the identity automorphism and p : Z → G/N is defined by
p : z · g 7→ Ng, for every g ∈ G.

Proof. Define p : z 7→ N . Let z′ ∈ Z. Transitivity implies the existence of g ∈ G such that
z′ = z · g. Define p : z′ 7→ Ng. If z′ = z · h for some other h ∈ G then gh−1 ∈ N and Ng = Nh.
Therefore p is well defined and injective. Obviously it is also surjective. Let x ∈ Z and h ∈ G
such that x = zh. Let g ∈ G, then p(x · g) = p(zhg) = Nhg = Nh Id(g) = p(x)Id(g). ¤

2.4.1 Interpretation of the lemma

A simple interpretation of the lemma is that in a transitive action (Z,G) one can label bijectively
the elements of Z by the cosets in G/StabG(z) in such a way that the natural action of G on
labels (i.e. cosets) matches the action on the elements of Z. Note that the different choice of z
implies a different stabilizer.

It is not hard to see that the stabilizers of a transitive action correspond to exactly all
conjugates of any particular stabilizer. Hence we have the corollary.

Corollary 5 Let G be a group and N a subgroup. For each w ∈ G the actions (G/N,G) and
(G/w−1Nw) are isomorphic.

2.5 The core

The kernel Z(G) of a transitive action (Z, G) is the intersection of all the stabilizers and therefore
the intersection of all the conjugates of StabG(z), for any z ∈ Z. The consequence is that Z(G) is
the largest normal subgroup in G which is contained in StabG(Z). The largest normal subgroup
H C G contained in a subgroup K 6 G is usually called the core of K and denoted by CoreG(K).
Therefore, Z(G) = CoreG(StabG(z)), for any z ∈ Z. Each two elements from the same coset in
G/Z(G) have the same action on all elements in Z. Hence, the action (G/StabG(z), G/Z(G)) is
well defined and the kernel of this action is trivial – the action is faithful and according to the
Example 3, the action can be considered as an action of a permuatation group.

3 Algebraic definition of a map and generalizations

3.1 Rooted maps

A map is an action of the group

F = 〈s0, s1, s2 | s2
0, s

2
1, s

2
2, (s0s2)2〉

on a finite set Z of elements called flags. If f : F → SymR(Z) is the action homomorphism, then
G := f(F ) together with the distinguished generators f(si) (see the three involutions in Section



1) is called the monodromy group. If we additionally choose a distinguished flag denoted by id
and call it a root, then the quadruple (f, Z, G, id) represents a rooted map.

3.2 Comments on rooted maps

Rather then insisting on G to be a subgroup of SymR(Z) we will be often satisfied with G being
an abstract group acting faithfully on Z (which is by Example 3 permutation isomorphic to
some subgroup of SymR(Z)).

3.2.1 Gluing according to the action

Note that this definition is slightly more general then the one in Section 1. It basically says that
for any action (Z, F ) we can take the set Z as a set of triangles with sides labeled by all the
three labels s0, s1 and s2. Two triangles Φ and Ψ are glued over the side labeled by si if and
only if Φsi = Ψ. Hence, the action is a set of rules for gluing.

Rooting maps will later turn out to be helpful in developing the theory.

3.2.2 Surfaces with boundary

The conditions giving us a compact closed surface (namely, the permutations f(si), i = 0, 1, 2,
and f(s0s2) are fixed point free) are equivalent to that the elements si, i = 0, 1, 2, and s0s2

are not contained in any of the stabilizers. In the definition of a rooted map we omit these
conditions. When Φ · si = Φ for some flag Φ, the corresponding side of the triangle is on the
boundary of the surface. This gives us a class of maps embedded on more general surfaces, the
ones with boundary.

3.2.3 Vertices, edges, faces

Beside the gluing, the action of F also defines the vertices, edges and faces. A vertex is defined
by a set of all the flags containing it. Algebraically, vertices correspond to orbits of 〈s1, s2〉.
Similarly edges corresponds to orbits of 〈s0, s2〉 and faces to orbits of 〈s0, s1〉.
3.2.4 Orientability

The existence of an odd length word of F in a stabilizer of a flag implies an existence of an odd
length cycle in the flag graph. The triangles glued along the odd length cycle form a Möbius
band and therefore the underlying surface is non-orientable. If no such case occurs, the surface
is orientable.

In the orientable case only the even length words can bring us back to the initial flags.
Therefore all the stabilizers (i.e. the sets of words which bring us back) are contained in the
index two subgroup F+ 6 F generated by even words. Relative to the root flag, the flags can
be divided into the two partitions, namely the ones reachable from id only by even-length walks
and the the ones that can be reachable from id only by odd-length walks. The group F+ has
two orbits on the flags. The flag graph is in the orientable case bipartite.

If this is not the case, we have at least one odd-length cycle in the flag graph. Each flag can
be reached by even-length walk and therefore F+ is transitive on the flags. This case represents
non-orientable rooted maps.



4 Quotients and covers of maps

4.1 Map morphism

A rooted map morphism of two rooted maps M = (f, Z,G, id) and N = (f ′, Z ′, G′, id′) is an
action epimorphism (p, q) : (Z, G) → (Z ′, G′), where p(id) = id and f ′ = q◦f . Therefore, (p, Id) :
(Z,F ) → (Z ′, F ), where Id : F → F is the identity isomorphism, is an action epimorphism.

Homework 2 Prove that at most one rooted map morphism exists between any two rooted maps.

4.2 Canonical representation of a rooted map

Homework 3 Let M = (f, Z, G, id) be a rooted map. Denote by N = StabF (id) and K =
CoreF (N). Then M is isomorphic to the rooted map (q, F/N,F/K,N), where q : F → F/K is
the natural epimorphism.

The corrolary of the Homework 3 is that each rooted map M = (f, Z, G, id) can be assigned
a subgroup N = StabF (G) 6 F . The assignment is denoted by the mapping S taking a rooted
map M to the subgroup S(M) = StabF (id) 6 F .

4.3 Quotients and stabilizers

Proposition 6 Let M and N be rooted maps. Then there is a map morphism from M to N if
and only if S(M) 6 S(N). In particular, M ∼= N if and only if S(M) = S(N).

Proof. Denote H = S(M), K = CoreF (H), H ′ = S(N), K ′ = CoreF (H ′), where q : F → F/K
and q′ : F → F/K ′ are the natural epimorphisms. We may assume that M = (q, F/H, F/K, H)
and N = (q′, F/H ′, F/K ′,H ′).

(⇐) If H 6 H ′, then K 6 K ′ and the mapping f : F/K → F/K ′, defined by f : Kg 7→ K ′g is
a group epimorphism, such that f ◦ q = q′. It suffices to show that f is well defined as the rest
is clear. If Ka = Kb, then ab−1 ∈ K 6 K ′ and therefore K ′a = K ′b. Hence, f is well defined.

Let p : F/H → F/H ′ be defined by p(Hw) = H ′w. Similarly as for f , p is well defined and
obviously a surjection. We claim that (p, f) is the rooted map morphism. Let a ∈ F/K. Then
there exists v ∈ F , such that q(v) = a and

p(Hw · a) = p(Hw · q(v)) = p(HwKv) = p(HwKw−1wv)
= p(HKwv) = p(Hwv) = H ′wv.

On the other hand

p(Hw)f(a) = p(Hw)f(q(v)) = H ′w · q′(v) = H ′wK ′v = H ′wv.

Obviously, p(H) = H ′.

(⇒) Let (p, f) : (F/H, F/K) → (F/H ′, F/K ′) be the rooted map morphism. Then p(H) = H ′

and f ◦ q = q′. This implies that

f(StabF/K(H)) 6 StabF/K′(H ′) = H ′/K ′ = q′(H ′).

On the other hand,
f(StabF/K(H)) = f(H/K) = f(q(H)) = q′(H).

Since q′(H) 6 q′(H ′) it follows H 6 q′−1(q′(H ′)) = H ′. ¤



4.4 Isomorphism classes of rooted maps and subgroups of F

The direct consequence of the proposition is the following important theorem.

Theorem 7 The isomorphism classes of rooted maps are for the relation M → N (i.e. there
exists a rooted map morphism from M to N) an algebraic lattice anti-isomorphic to the lattice
of finite index subgroups of F .

The theorem has far reaching consequences. It tells us that each two rooted maps have the
unique common cover and the unique common quotient.

4.5 Classification of all quotients

Proposition 8 Let M = (f, Z, G, id). Then all maps N such that there is a rooted map mor-
phism from M to N are isomorphic to one of (q, F/K, F/CoreF (K),K), where K > StabF (id)
and q : F → F/CoreF (K) is the natural epimorphism.

From now on, each rooted map N , such that there is an epimorphism from the rooted map
M to N will be called a quotient of M .

4.5.1 Calculation issues

The fact that F and all K in Proposition 8 are infinite groups makes any calculation hard. In
order to enable us to perform any calculation on M = (f, Z, G, id), like find the smallest common
cover or find all quotients, it would be useful, if we could bring the Theorem 7 and Proposition
8 down into the permutation group G.

4.6 The correspondence theorem

For that we will use the following well known theorem in group theory, so called the Correspon-
dence theorem or the 4th isomorphism theorem for groups.

Theorem 9 Let G and G′ be groups, f : G → G′ an epimorphism, A = {K : ker f 6 K 6 G}
and B = {K ′ : K ′ 6 G′}. The mapping Θ : A → B defined by Θ : K 7→ f(K) is a bijection.
Under this bijection normal subgroups correspond to normal subgroups. If K ∈ A and K ′ ∈ B,
Θ(K) = K ′, then for any w ∈ G, Θ(w−1Kw) = f(w)−1K ′f(w), and for any v ∈ G′ and any
z ∈ f−1(v), Θ−1(v−1K ′v) = z−1Kz. Furthermore, [G : K] = [G′ : K ′] and for any two groups
K, H ∈ A, if K 6 H, then F (K) 6 F (H).



Homework 4 Prove all the claims in the Theorem 9.

4.7 Classification of quotients through the monodromy group

Proposition 10 Let M = (f, Z,G, id) be a rooted map and S = StabG(id). Then for each
subgroup K, where S 6 K 6 G, the map M/K = (q ◦ f, G/K,G/CoreG(K),K), where q : G →
G/CoreG(K) is the natural epimorphism, is a quotient of M . Furthermore, for any K ′, where
S 6 K ′ 6 G, M/K ′ is a quotient of M/K if and only if K 6 K ′. In particular M/K ∼= M/K ′

if and only if K = K ′.

Proof. To verify that M/K is a rooted map, it suffices to check that (G/K, G/CoreG(K)) is a
faithful action (which obviously is) and that (q ◦ f)(F ) = q(G) = G/CoreG(K). To show that
M/K is a quotient of M we have to show that S(M/K) 6 S(M). Note that

S(M/K) = (q ◦ f)−1(StabG/CoreG(K)(K))

= f−1(q−1(K/CoreG(K)))

= f−1(K).

On the other hand S(M) = f−1(G). Since G 6 K, it follows S(M) 6 S(M/K). Note that by
Theorem 9, the groups K, where S 6 K 6 G and the groups N , where S(M) 6 N 6 F , are in
one-to-one correspondence. ¤

4.8 Application of the theory

Example 11 We will use Magma to determine all the quotients of the tetrahedron map.



The three involutions are elements of SymR(24). Calculate the symmetric group on 24 ver-
tices:

S24 := SymmetricGroup(24);

Let

s0 := S24!(1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24);
s1 := S24!(1,13)(2,12)(3,17)(4,6)(5,18)(7,23)(8,10)(9,24)(11,14)(15,19)(16,22)(20,21);
s2 := S24!(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24);

Calculate the monodromy group as the subgroup of S24 generated by s0, s1 and s2.

Mon := sub<S24| s0, s1, s2>;

The group is of order 24 (check with Order(Mon);. For the root flag we will choose the flag
numbered 1. Calculate the stabilizer:

Stab := Stabilizer(Mon, 1);

We se, that the stabilizer is trivial. This means that the action of the monodromy group is
regular. Calculate the lattice of subgroups for Mon.

sgl := SubgroupLattice(Mon);

The result returned is as follows:

Partially ordered set of subgroup classes

-----------------------------------------

[ 1] Order 1 Length 1 Maximal Subgroups:

---

[ 2] Order 2 Length 3 Maximal Subgroups: 1

[ 3] Order 2 Length 6 Maximal Subgroups: 1

[ 4] Order 3 Length 4 Maximal Subgroups: 1

---

[ 5] Order 4 Length 1 Maximal Subgroups: 2



[ 6] Order 4 Length 3 Maximal Subgroups: 2

[ 7] Order 4 Length 3 Maximal Subgroups: 2 3

[ 8] Order 6 Length 4 Maximal Subgroups: 3 4

---

[ 9] Order 8 Length 3 Maximal Subgroups: 5 6 7

[10] Order 12 Length 1 Maximal Subgroups: 4 5

---

[11] Order 24 Length 1 Maximal Subgroups: 8 9 10

Therefore, the tetrahedron has exactly 11 non-isomorphic quotients, including itself (correspond-
ing to [1]) and the trivial map on a single flag (corresponding to [11]). Consider one of the
quotients, let’s say the one corresponding to [2]. The group K for taking the quotient is of order
2. If T denotes the tetrahedron map, then we will now calculate T/K.

proj, MonTK := CosetAction(Mon, sgl[2]);

Here we calculate the monodromy group of the quotient MonTK and the corresponding epi-
morphism proj. Now calculate the new three involutions.

ss0 := proj(s0);
ss1 := proj(s1);
ss2 := proj(s2);

And print them out:

> ss0; ss1; ss2;
(1, 2)(3, 7)(4, 6)(5, 10)(8, 11)(9, 12)
(1, 3)(2, 5)(4, 9)(6, 11)(7, 10)(8, 12)
(1, 4)(2, 6)(3, 8)(5, 10)(7, 11)(9, 12)

Lets count the orbits:

> Orbits(sub<MonTK| ss1, ss2>);
[

GSet{ 1, 3, 4, 8, 9, 12 },
GSet{ 2, 5, 6, 7, 10, 11 }

]
> Orbits(sub<MonTK| ss0, ss2>);
[

GSet{ 5, 10 },
GSet{ 9, 12 },
GSet{ 1, 2, 4, 6 },
GSet{ 3, 7, 8, 11 }

]
> Orbits(sub<MonTK| ss0, ss1>);
[

GSet{ 1, 2, 3, 5, 7, 10 },
GSet{ 4, 6, 8, 9, 11, 12 }

]



The map has 2 vertices of degree 3, 2 edges, 2 semi-edges 2 faces.
Now we will determine the orientability of the map. The image of the even word subgroup

F+ can be generated by ss0*ss1 and ss1*ss2. Let us count the orbits:

> #Orbits(sub<MonTK| ss0*ss1, ss1*ss2>);
2

Since we have two orbits the map embedded into an orientable surface. Note that ss0, ss1 and
ss2 are fixed-point-free which means that the underlaying surface is compact closed. The euler
formula for orientable compact closed surfaces is

v − e + f = 2− 2g.

Note that in this formula we omit semiedges. Therefore 2 − 2g = 2 − 2 + 2 and g = 0. The
map is embedded into the sphere. By using the three involutions we can obtain the image of the
embedding:

4.9 Parallel product

One of interesting questions is also how to calculate the smallest common cover of two rooted
maps.

In 1994 S. E. Wilson proposed the operation called the parallel product. Let M = (f, Z,G, id)
and N = (f ′, Z ′, G′, id′) be two rooted maps. Then G×G′ acts naturally on Z×Z ′. The subgroup
P 6 G × G′ generated by {(f(si), f ′(si))}2

i=0 acts on Z × Z ′ but not necessarily transitively.
Denote by (Z × Z ′)(id,id′) the orbit of P containing (id, id′). Then

((f, f ′), (Z × Z ′)(id,id′), P, (id, id′))

is a rooted map (according to Homework 5) which is the unique smallest map that covers both
M and N . The parallel product of M and N is denoted by M ‖ N .

Homework 5 Show that the definition of the parallel product yields a rooted map. In particular
you have to show that the action ((Z ×Z ′)(id,id′), P ) is faithful. Show that S(M ‖ N) = S(M)∩
S(N) and conclude that M ‖ N is the unique smallest common cover of M and N .

The construction proposed by Wilson is suitable for computational purposes.



4.9.1 Parallel product on isomorphism classes

Note that the algebraic lattice of subgroups has the two operations, meet of two groups H, K 6
F , defined simply by intersection H ∩K, and join, defined by the smallest group generated by
H and K. By Theorem 7, the parallel product is join in the algebraic lattice of isomorphism
classes of rooted maps and is in the correspondence with operation meet in the subgroup lattice
(due to the anti-isomorphism). The correspondence could be written as:

[M ] ‖ [N ] = [(q, F/K, F/CoreF (K),K)],

where K = S(M) ∩ S(N), q : F → F/CoreF (K) is the natural epimorphism, and the notation
[M ] denotes the isomorphism class of M .

5 Automorphisms of maps

An automorphism of a rooted map M = (f, Z, G, id) is any bijection α ∈ SymL(Z), such that
for any z ∈ Z and any w ∈ F , it follows α(z · w) = α(z) · w.

5.1 Semi-regularity of Aut(M)

Due to transitivity of F , there can be at most one map automorphism taking the flag id to some
flag Φ. Namely, the assignment α : id 7→ Φ implies that for any flag Ψ, there exists v ∈ F , such
that Ψ = id · v and therefore α(Ψ) = α(id · v) = α(id) · v = Φ · v.

5.2 The automorphism naming convention

This fact we can use in labeling automorphism according to where they take the root flag. The
notation αw, for w ∈ F will denote the automorphism which maps id to id ·w. As usual, we will
denote the group of automorphisms of a rooted map by Aut(M).

5.3 (Non)categorical remark

Note that rooted map automorphisms are not map morphisms in a strict categorical sense. But
in the theory of maps this mathematical blasphemy turns out to be convenient and therefore we
use it.

5.4 Characterization of automorphisms

Note that in general αw does not exist for every w ∈ F . The following theorem characterizes
when this is the case. Before that, recall the definition of the normalizer. Let K be a subgroup
of G. Then the normalizer of K equals

NormG(K) = {g ∈ G | g−1Kg = K}.

Theorem 12 Let M = (f, Z, G, id), N = StabF (id) and N = NormF (N). Then Aut(M) =
{αw | w ∈ N}. In particular αw = αv, if and only if Nw = Nv. The mapping Θ : N → Aut(M),
defined by Θ : w 7→ αw is a group epimorhism, with kerΘ = N and induces the isomorphism of
N/N and Aut(M).



Proof. Let αw ∈ Aut(M) (therefore αw exists) and let n ∈ N . It is clear that αw−1 ∈ Aut(M)
and αw−1 = (αw)−1 Therefore,

id · w−1nw = αw−1(id) · nw = αw−1(id · nw)
= αw−1(id · w) = αw−1(αw(id)) = id,

implying that w−1Nw 6 N and since [F : N ] = [F : w−1Nw], it follows w−1Nw = N and
w ∈ N .

Now let w ∈ N . Define δ : Z → Z by the rules δ(id) = id · w and δ(id · u) = id · wu, for
any u ∈ F . We need to show that δ is well defined. If we show that, then δ = αw ∈ Aut(M).
Consider now u, v ∈ F , such that id · u = id · v. Then uv−1 ∈ N . Since N is a group and
w ∈ N , the w−1 ∈ N . Hence, (w−1)−1uv−1w−1 ∈ N . But (w−1)−1uv−1w−1 = wu(wv)−1 and
thus id · wu = id · wv. It follows that δ is well defined.

We can conclude, that the mapping Θ : N → Aut(M), defined by Θ : w 7→ αw is well
defined. Note that for any w, v ∈ N , Θ(wv) = αwv. But

αwv(id) = id · wv = αw(id) · v = αw(id · v)
= αw(αv(id)) = (αw ◦ αv)(id).

Hence αwv = αw ◦ αw and Θ is group epimorphism. It is clear that kerΘ = N . ¤

5.5 Intuitive interpretation of the normalizer

The intuitive interpretation of the theorem is that N contains exactly all the words in F which
take us from id to the flags in the same orbit of Aut(M). Note that the intuitive interpretation
of the stabilizer N was: “all the words in F which bring us back to id”.

Since (Z,F ) is a transitive action, we know that the flags in Z can be labeled by the cosets
of F/N in such a way, that the natural action of F on labels corresponds to the action of F on
flags. Note that N is build of some of the cosets in F/N . These cosets label exactly the orbit
of Aut(M) containing id (which is labeled by the coset N).

5.5.1 Seems like hard homework, but it is not ...

Homework 6 Let M = (f, Z, G, id), N = S(M) and N = NormF (N). Then we know that M
is isomorphic to M ′ = (q, F/N,F/CoreF (N), N), where q : F → F/CoreF (N) is the natural
epimorphism. Let (p, r) : M → M ′ be the isomorphism. Then

(1) Then for each orbit O under the action of Aut(M) on Z, there exists w ∈ F , such that the
flags in O are mapped bijectively on the cosets {Nv | v ∈ Nw}. We say that w corresponds
to the orbit O.

(2) If w ∈ F corresponds to the orbit O, than any w′ ∈ Nw also corresponds to O. Therefore
we say that the coset Nw corresponds to O.

(3) Different cosets Nw and N v correspond to different orbits.

(4) All orbits of Aut(M) on the flags Z are of the same size which equals |Aut(M)| = [N : N ]
and number of orbits equals [F : N ].



5.6 Representation of the action of Aut(M)

For any map M = (f, Z, G, id), we know that M is isomorphic to (q, F/N, F/CoreF (N), N)
where N = S(M) and q : F → F/CoreF (N) is the natural epimorphism. Let (p, r) be the
isomorphism. Therefore the flags can be considered as cosets in F/N .

In this case the natural left action of the group N/N on the cosets F/N (i.e. labels) is
equivalent to the action of Aut(M) on flags. Let θ be the isomorphism between N/N and
Aut(M) induced by Θ in Theorem 12.

The natural left action of N/N on the cosets F/N is defined as follows.
For Nw ∈ F/N and Nv ∈ N/N (that is: w ∈ F and v ∈ N ) it follows

NvNw = NvN(v−1v)w = N(vNv−1)vw = Nvw.

We have a well defined left action (N/N, F/N) (note the reversed order of the group and
the set in notation for left actions).

Homework 7 Using the notation as above, prove that (θ−1, p) : (Aut(M), Z) → (N/N, F/N)
is an isomorphism of left actions.

5.7 Representing Aut(M) with right actions

One can use right actions to represent Aut(M). Then for M = (f, Z,G, id), Aut(M) 6 SymR(Z).
Since for any z ∈ Z, α ∈ Aut(M) and w ∈ G (G also considered as a subgroup of SymR(Z)) it
follows

zαw = zwα,

it follows that αwα−1w−1 ∈ StabG(z). But as this is true for any z ∈ Z and (Z,G) is faithful,
the intersection of all stabilizers (this is exactly Z(G)) is trivial and Therefore, αw = wα or
α−1wα = w. Therefero Aut(M) is exactly the centralizer of G in SymR(Z). Note that in
general, for G a group and K a subgroup, the centralizer is

CentG(K) = {g ∈ G | g−1kg = k, for any k ∈ K}.

Example 13 Continue from Example 11. Let us calculate the automorphism group of the tetra-
hedron.

Norm := Normalizer(Mon, Stab);
Aut1 := quo<Norm| Stab>;

It is true that Aut1 is isomorphic to the automorphism group. However, for us is not very
useful, since Aut1 does not act on the same set of flags as Mon. To achieve this we use:

Aut := Centralizer(S24, Mon);

To verify the theory check the following.

IsIsomorphic(Aut, Aut1);



5.8 About symmetries, regular maps

There are several interesting implications of Theorem 12, among them the following one.
Let n denote the number of flags. Since the monodromy group of a map M , denoted by

M(M) is transitive it follows that
n 6 |M(M)|.

Since the Aut(M) is semi-regular it follows

|Aut(M)| 6 n.

Note that for N = S(M) and N = NormF (N), M(M) ∼= F/CoreF (N), while Aut(M) ∼= N/N .
The number of flags corresponds to the number of cosets. Equalities occur in the above two
equations exactly at the same time: namely when N = CoreF (N), i.e. N = F . In this special
case we have the maximal symmetry, monodromy and automorphism group are of the same
order equal to the number of flags. We have so called regular maps. An example of a regular
map is the tetrahedron. For a regular map M , it follows S(M) C F .

Clearly, parallel product of regular maps is a regular map (if S(M) and S(N) are normal in
F , then S(M) ∩ S(N) is also normal in F ).

Homework 8 Let M and N be maps such that in both maps the automorphism αw, w ∈ F ,
exists. Then αw exists in M ‖ N .

6 Map operations

A map operation is defined by a pair (ϕ, f), where ϕ : F → Q is an epimorphism and h : F → Q a
homomorphism that takes subgroups of finite index to subgroups of finite index (not necessarily
the same as the initial index). The operation is performed on stablizers. Let M be a rooted
map. Then ϕ−1(h(S(M)) is the stabilizer corresponding to the map obtained by the operation.

6.1 Dual, Petrie dual

The most common map operations arise from certain automorphisms of F . Two of the most
interesting map operations are the Dual and the Petrie Dual of a map. They are defined by the
corresponding automorphisms of F , defined on generators by:

(s0, s1, s2) 7→ (s2, s1, s0)

and
(s0, s1, s2) 7→ (s0s2, s1, s2).

Homework 9 Show that the operations Dual and Petrie dual generate a group of six operations
which is isomorphic to S3.

Both operations have the corresponding geometric interpretation. For instance, the change
of roles in generators s0 and s2 in dual results in changing the role of vertices and faces. An edge
separating two faces becomes in dual of the map an edge that connects the two faces (which are
now in the role of vertices).



Homework 10 Determine all the maps that can be obtained from the tetrahedron by applying
the operations Dual and Petrie Dual. For each such map determine its underlying surface.

There are also other interesting operations on maps on compact closed surfaces which pre-
serve the surface. Among them the most important are the medial and the truncation.

In the medial we subdivide each edge by adding edge-centers. The edge-centers become the
new vertices of the medial of the map. Then we can imagine that we connect two edge-centers
in the face where the edge-centers are incident. The example is shown in the figure below.

Another interesting operation is the truncation. What we basically do here is that we in a
kind of a geometic way truncate the vertices. The figure below shows an example.



The dual, medial and the truncation are members of the family of the operations perserving
the surface. This family is obtained by taking flags of an initial map M and considering the
flags as triangles, an operation is defined by a subdivision of each triangle to smaller triangles
together with the reinterpretation (or new labelling) of the new triangle vertices in a consistent
way within triangle as well as between the (big) triangles representing the flags. The figures
below represent such divisions for the dual, medial and the truncation.

Now let us just quickly see how algebraic definition for truncation goes.
Let C3 = 〈s0, s1, s2 | s2

0, s
2
1, s

2
2, (s0s2)2, (s1s2)3〉. The group C3 is a quotient of F and let

ϕ : C → C3 be the epimorphism. Since the subgroup K = 〈s0, s1s0s1, s2〉 is of index 3 in F, then



ϕ(K) is also of index 3 in C3. Define:

r0 = ϕ(s0),
r1 = ϕ(s1s0s1),
r2 = ϕ(s2).

One can show that the mapping:

f : F → f(K), f : si → ri

is a group epimorphism which extends to an homomorphism f : F → C3. The truncation is
defined by the pair (ϕ, f).

7 Generalizations of rooted maps

If instead of F we take some other group the theory still works. For instance, if

F = 〈s0, s1, s2 | s2
0, s

2
1, s

2
2〉,

we obtain hypermaps.
If

F = 〈r, l | l2〉.
we get orientable maps (rotation and edge involution).


