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The entire class of (simple) graphs is too big

Graphs are used to represent various “complicated
systems” in a compact way.
But a graph is in fact just an irreflexive symmetric relation
on a set.
The entire class of graphs is thus too big to be investigated
as a whole.
We are forced to make some restrictions, that is, we focus
on some special classes of graphs.
One possibility is to require that a graph has a certain
degree of symmetry.
This is measured by the automorphism group of the graph
in question.
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A quick review

A k -path of a graph X is a sequence of k + 1 pairwise
distinct vertices of X such that each two consecutive
vertices are adjacent.
An s-arc of X is a sequence of s + 1 vertices of X such
that each two consecutive vertices are adjacent and any
three consecutive vertices are pairwise distinct.
A cycle of X is a connected regular subgraph of X of
degree 2.
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A quick review

An action of a group G on a set X is transitive if for any pair
of points x , y ∈ X there exists a g ∈ G such that y = xg.
The automorphism group AutX of X is defined as a certain
permutation group acting on its vertex set.
But it also acts naturally on the set of edges, arcs, s-arcs,
k -paths, k -cycles, etc.
This way we obtain some interesting classes of graphs.
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Classes of graphs

Vertex-transitive graphs.
The group AutX acts transitively on V (X ).

Edge-transitive graphs.
AutX acts transitively on E(X ).
The graph X can be vertex-transitive or not.
In the latter case, X is semisymmetric.

Arc-transitive graphs.
AutX acts transitively on the set A(X ) of 1-arcs of X .
In this case X is automatically edge-transitive. If it does not
contain isolated vertices it is also vertex-transitive.
s-arc transitive graphs, where s ≥ 2.

Half-arc-transitive graphs.
X is vertex-transitive, edge-transitive but not arc-transitive.
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s-arc-transitivity

For which s does there exist an s-arc-transitive graph?
In 1947 Tutte showed that there exists no s-arc-transitive
cubic graph for s > 5.
In 1981 Weiss showed that there exists no s-arc-transitive
graph for s > 7 (using the classification).
The smallest 5-arc-transitive cubic graph: Tutte’s 8-cage.
An arc-transitive cubic graph X of order n is exactly
s-arc-transitive iff |AutX | = 3n · 2s−1.
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Examples

Circulant graphs, that is Cayley graphs of cyclic groups.
Circ(n; S), where S ⊂ Zn with 0 /∈ S and −S = S, is the
graph with vertex set Zn and where i ∼ j ⇐⇒ j − i ∈ S.
Circ(10; {±1,±3}) is exactly 2-arc-transitive.
Circ(13; {±1,±3,±4}) is exactly 1-arc-transitive.
Circ(14; {±1,±3}) is just vertex-transitive.

Circ(14;{ 1, 3})± ±Circ(10;{ 1, 3})± ±
Circ(13;{ 1, 3, 4})± ± ±
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Homework 1

H1:
Determine the largest integer s for which there exists a
connected s-arc-transitive circulant of valency at least
three.
Then classify all connected s-arc transitive circulants of
valency at least three.
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Examples

Generalized Petersen graphs G(n, k), k ≤ n−1
2 .

In 1971 Frucht, Graver and Watkins proved the following:
Let A(n, k) = AutG(n, k) and let B(n, k) ≤ A(n, k) be the
subgroup fixing the set of “spokes”.
Let ρ, σ, τ be defined by:

uiρ = ui+1, viρ = vi+1

uiσ = vki , viσ = uki

uiτ = u−i , viτ = v−i

Then
if k2 6≡ ±1 (mod n) then B(n, k) = 〈ρ, τ〉 = D2·n.
if k2 ≡ 1 (mod n) then B(n, k) = 〈ρ, σ, τ〉, where στ = τσ
and σ−1ρσ = ρk .
if k2 ≡ −1 (mod n) then B(n, k) = 〈ρ, σ〉, where σ−1ρσ = ρk .
A(n, k) = B(n, k) unless
(n, k) ∈ {(4, 1), (5, 2), (8, 3), (10, 2), (10, 3), (12, 5), (24, 5)}.
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Examples

It follows that

Proposition

The graph G(n, k) is vertex-transitive iff k2 ≡ ±1 (mod n) or
n = 10, k = 2.

It turns out that the above seven exceptional graphs are
edge-transitive. Hence

Proposition

The graph G(n, k) is edge-transitive (and thus arc-transitive) iff
(n, k) ∈ {(4, 1), (5, 2), (8, 3), (10, 2), (10, 3), (12, 5), (24, 5)}.

In fact, all of the above seven graphs are 2-arc-transitive
and the Petersen graph G(5, 2) and the Desargues graph
G(10, 3) are also 3-arc-transitive.
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Semisymmetric graphs

Proposition
A semisymmetric graph is bipartite.

Proof.
We can assume that the graph X is connected.
Take any uv ∈ E(X ), let U and V be the AutX -orbits of u
and v , respectively.
Let w ∈ V (X ). There exists e ∈ E(X ) incident with w .
As X is edge-transitive, some ϕ ∈ AutX maps uv to e.
Hence, w ∈ U ∪ V, and so, as X is not vertex-transitive,
AutX has two orbits, namely U and V, on V (X ).
Clearly U and V are independent sets, and so X is
bipartite.
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Semisymmetric graphs

It turns out that the smallest semisymmetric graph is the
so-called Folkman graph. It is tetravalent and has 20
vertices. The Folkman graph is of girth 4. Its
automorphism group is of order 3840.
It turns out that the smallest cubic semisymmetric graph is
the so-called Gray graph having 54 vertices. One of its LCF
notations is [7,−7, 13,−13, 25,−25]9. The Gray graph is
of girth 8. Its automorphism group is of order 1296.
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The Folkman graph
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The Gray graph
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Homework 2

H2:
Show that the Folkman graph is indeed semisymmetric.
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An open problem

There are many interesting open problems about
vertex-transitive graphs.
Probably the most famous is the question of Lovász about
the existence of Hamilton paths in vertex-transitive graphs.
This question has been open for almost forty years.
So far no example not having such a path is known.
In fact, only four (excluding the trivial K2) vertex-transitive
graphs not possessing a Hamilton cycle are known. These
are the Petersen graph, the Coxeter graph and the two
graphs obtained from them by “replacing each vertex by a
triangle”.
None of these four graphs is a Cayley graph.
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An open problem

Many papers on the subject.
Complete answers only for graphs of certain order:
p, 2p, 3p, 4p, 5p, 6p, p2, p3, p4, 2p2.
The following result by Dobson, Gavlas, Morris2 is also of
interest:

Theorem
Every connected vertex-transitive graph, other than the
Petersen graph, whose automorphism group contains a
transitive subgroup with a cyclic commutator subgroup of
prime-power order, has a Hamilton cycle.
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An open problem

How do we tackle such a problem?
Semiregular automorphisms.
An automorphism of a graph of order mn is
(m, n)-semiregular if it has m orbits of length n.

Proposition (Marušič, 1981)
A vertex transitive graph of order mp, where m ≤ p, p a prime,
admits an (m, p)-semiregular automorphism.

Why semiregular automorphisms?
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Using semiregular automorphisms

We show that, except for the Petersen graph, every
vertex-transitive graph of order 2p has a Hamilton cycle.
We can assume that p ≥ 3.
By the above proposition X has a (2, p)-semiregular
automorphism. Let U and V be its two orbits.
If the bipartite subgraph [U, V ] is of valency greater than 1,
then X clearly has a Hamilton cycle.
We can thus assume that [U, V ] is a matching and hence
each of the circulants [U] and [V ] is connected.

U V
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Using semiregular automorphisms

It is easy to see that [U] is Hamilton-connected if it is not a
cycle. (Chen-Quimpo)
We can thus assume that X ∼= G(p, k) is a generalized
Petersen graph.
Thus k2 ≡ ±1 (mod n).
K. Bannai (1978) showed that G(n, k) has a Hamilton cycle
whenever gcd(n, k) = 1 except when n ≡ 5 (mod 6) and
k ∈ {2, n−1

2 }.
Thus, if X is not the Petersen graph, it contains a Hamilton
cycle.
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Constructing vertex-transitive graphs

Let G be a transitive permutation group acting on the set X .
Let O be a union of orbitals of G on X (orbits of G on
X × X ).
The generalized orbital (di)graph GenOrb(G, X ,O) relative
to G, X and O is then the (di)graph with vertex set X and
edge set O.
The digraph GenOrb(G, X ,O) is a graph iff O coincides
with O∗ = {(y , x) | (x , y) ∈ O}.
The digraph GenOrb(G, X ,O) is of course vertex-transitive.
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Constructing vertex-transitive graphs

Let G be an arbitrary group and let H be its subgroup.
Then G acts on G/H = {Hg | g ∈ G} by right multiplication.
Let O be a union of orbits of H on G/H, that is, O is a
union of double cosets HgH.
The generalized orbital (di)graph GenOrb(G, H,O) relative
to G, H and O is then the (di)graph with vertex set G/H
and where Hg → Hg′ ⇐⇒ g′g−1 ∈ O.
Every vertex-transitive graph is a generalized orbital graph
of some group - its automorphism group.
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For example:

Let G = Alt(5) be the alternating group of order 60.
Let H = 〈(1 2 3), (1 2)(4 5)〉 =
{id , (1 2 3), (1 3 2), (1 2)(4 5), (1 3)(4 5), (2 3)(4 5)}.
Let O = H(2 4)(3 5)H.
The graph GenOrb(G, H,O) is isomorphic to G(5, 2).

H

H(14)(35)

H(24)(35) H(14)(25)

H(15)(23) H(12)(34)

H(13)(24)

H(13)(25)

H(14)(23) H(12)(35)
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Half-arc-transitive graphs

Tutte (1966): half-arc-transitive ⇒ even valency.
The question of the existence of half-arc-transitive graphs
of prescribed even valency.
Bower (1970): they exist.
Doyle (1976) and Holt (1981): found one of order 27.
This is in fact the smallest half-arc-transitive graph.
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Tetravalent half-arc-transitive graphs

Smallest possible valency is 4.
Many papers dealing with these graphs.
Even with this restriction the classification is presently
beyond our reach.
There has been some progress.
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We cannot flip an edge

Proposition (Proposition 2.1.(Marušič 1998))
Let X be a G-half-arc-transitive graph for some G ≤ AutX.
Then no element of G interchanges a pair of adjacent vertices
of X .

Two (paired) oriented graphs DG(X ) correspond to a
G-half-arc-transitive graph.

Fix an edge uv and choose one of the two orientations.
As X is G-edge transitive, we can map any edge xy to uv .
By the above proposition always in “the same way”.
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Alternating cycles and attachment number

In tetravalent half-arc-transitive graphs we thus have
alternating cycles.
Half of their length is called the radius of the graph in
question.
Any two nondisjoint alternating cycles meet in the same
number of vertices.
This number is called the attachment number of the graph
in question.
The relation between these two numbers is very important.
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The approach to classification

Theorem (Marušič, Praeger, 1999)

If X is a connected tetravalent G-half-arc-transitive graph, then
either X is tightly G-attached or it is a cover over a loosely or
antipodally G-attached graph.

We thus need to classify these three special families.
Then investigate these covers.
So far the first step has been done: the classification of
tightly attached graphs has been completed.
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The two theorems

Theorem (Marušič, 1998)
A connected tetravalent graph X is a tightly attached
half-arc-transitive graph of odd radius n if and only if
X ∼= Xo(m, n; r), where m ≥ 3 and r ∈ Z∗

n satisfies rm = ±1,
and moreover none of the following conditions is fulfilled:

(i) r2 = ±1;
(ii) (m, n; r) ∈ {(3, 7; 2), (3, 7; 4)};
(iii) (m, n; r) = (6, 7n1; r), where n1 ≥ 1 is odd and coprime to

7, r6 = 1, and there exists a unique solution
r ′ ∈ {r ,−r , r−1,−r−1} of the equation 2− x − x2 = 0 such
that 7(r ′ − 1) = 0 and r ′ ≡ 5 (mod 7).
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The two theorems

Theorem (Šparl, 200?)
A connected tetravalent graph X is a tightly attached
half-arc-transitive graph of even radius n if and only if
X ∼= Xe(m, n; r , t), where m ≥ 4 is even, r ∈ Z∗

n, t ∈ Zn are such
that rm = 1, t(r − 1) = 0 and 1 + r + · · ·+ rm−1 + 2t = 0, and
none of the following two conditions is fulfilled:

(i) r2 = ±1;
(ii) m = 6, n = 14n1, where n1 is coprime to 7, and there

exists a unique solution r ′ ∈ {r ,−r , r−1,−r−1} of the
equation 2− x − x2 = 0 such that r ′ ≡ 5 (mod 7) and
2 + r ′ + t ′ = 0, where t ′ = t in case r ′ ∈ {r , r−1} and
t ′ = t + r + r3 + · · ·+ rm−1 in case r ′ ∈ {−r ,−r−1}.
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The odd radius graphs

For every pair of integers m, n ≥ 3, n odd, and for any
r ∈ Z∗

n for which rm = ±1 let Xo(m, n; r) be the graph with
vertex set V = {uj

i | i ∈ Zm, j ∈ Zn}
edges defined by uj

i ∼ uj±r i

i+1 .
These graphs admit a half-arc-transitive subgroup of
automorphisms.
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The even radius graphs

For every pair of even integers m, n ≥ 4 and for every
r ∈ Z∗

n and t ∈ Zn, satisfying rm = 1, t(r − 1) = 0 and
1 + r + · · ·+ rm−1 + 2t = 0 let Xe(m, n; r , t) be the graph
with

vertex set V = {uj
i | i ∈ Zm, j ∈ Zn}

edges given by the following adjacencies:

uj
i ∼


uj

i+1, uj+r i

i+1 ; i ∈ Zm\{m − 1}, j ∈ Zn

uj+t
0 , uj+rm−1+t

0 ; i = m − 1, j ∈ Zn.

These graphs admit a half-arc-transitive subgroup of
automorphisms.
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The smallest even radius graph
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Some tightly attached graphs with small girth

Girth 3:
Xo(3, 13; 3)
Xo(3, 19; 7)
Xo(3, 21; 4)

Girth 4:
Xo(4, 15; 2)
Xo(4, 35; 8)
Xe(4, 20; 3, 0)
Xe(4, 20; 7, 10)
Xe(4, 30; 23, 0)

Girth 5:
Xo(3, 9; 2)
Xo(5, 11; 2)
Xo(5, 11; 3)

Girth 6:
Xo(6, 9; 2)
Xo(9, 7; 2)
Xo(4, 17; 2)
Xe(6, 14; 5, 0)
Xe(6, 18; 7, 15)
Xe(6, 26; 9, 0)
Xe(6, 26; 23, 0)

Girth 8:
Xo(8, 17; 3)
Xo(8, 17; 5)
Xe(6, 18; 7, 6)
Xe(4, 30; 13, 25)
Xe(8, 16; 11, 0)
Xe(8, 16; 11, 8)
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Homework 3

H3:
Show that there exists no half-arc-transitive Cayley graph
of an Abelian group.
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