Lecture no. 7

Transitive group actions on graphs

Primož Šparl

November 23, 2007

The entire class of (simple) graphs is too big

- Graphs are used to represent various "complicated systems" in a compact way.
- But a graph is in fact just an irreflexive symmetric relation on a set.
- The entire class of graphs is thus too big to be investigated as a whole.
- We are forced to make some restrictions, that is, we focus on some special classes of graphs.
- One possibility is to require that a graph has a certain degree of symmetry.
- This is measured by the automorphism group of the graph in question.

A quick review

- A k-path of a graph X is a sequence of $k+1$ pairwise distinct vertices of X such that each two consecutive vertices are adjacent.
- An s-arc of X is a sequence of $s+1$ vertices of X such that each two consecutive vertices are adjacent and any three consecutive vertices are pairwise distinct.
- A cycle of X is a connected regular subgraph of X of degree 2.

A quick review

- An action of a group G on a set X is transitive if for any pair of points $x, y \in X$ there exists a $g \in G$ such that $y=x g$.
- The automorphism group Aut X of X is defined as a certain permutation group acting on its vertex set.
- But it also acts naturally on the set of edges, arcs, s-arcs, k-paths, k-cycles, etc.
- This way we obtain some interesting classes of graphs.

Classes of graphs

- Vertex-transitive graphs.
- The group Aut X acts transitively on $V(X)$.
- Edge-transitive graphs.
- Aut X acts transitively on $E(X)$.
- The graph X can be vertex-transitive or not.
- In the latter case, X is semisymmetric.
- Arc-transitive graphs.
- Aut X acts transitively on the set $A(X)$ of 1-arcs of X.
- In this case X is automatically edge-transitive. If it does not contain isolated vertices it is also vertex-transitive.
- s-arc transitive graphs, where $s \geq 2$.
- Half-arc-transitive graphs.
- X is vertex-transitive, edge-transitive but not arc-transitive.

s-arc-transitivity

- For which s does there exist an s-arc-transitive graph?
- In 1947 Tutte showed that there exists no s-arc-transitive cubic graph for $s>5$.
- In 1981 Weiss showed that there exists no s-arc-transitive graph for $s>7$ (using the classification).
- The smallest 5-arc-transitive cubic graph: Tutte's 8-cage.
- An arc-transitive cubic graph X of order n is exactly s-arc-transitive iff \mid Aut $X \mid=3 n \cdot 2^{s-1}$.

Examples

- Circulant graphs, that is Cayley graphs of cyclic groups.
- $\operatorname{Circ}(n ; S)$, where $S \subset \mathbb{Z}_{n}$ with $0 \notin S$ and $-S=S$, is the graph with vertex set \mathbb{Z}_{n} and where $i \sim j \Longleftrightarrow j-i \in S$.
- $\operatorname{Circ}(10 ;\{ \pm 1, \pm 3\})$ is exactly 2 -arc-transitive.
- $\operatorname{Circ}(13 ;\{ \pm 1, \pm 3, \pm 4\})$ is exactly 1 -arc-transitive.
- $\operatorname{Circ}(14 ;\{ \pm 1, \pm 3\})$ is just vertex-transitive.

$\operatorname{Circ}(10 ;\{ \pm 1, \pm 3\})$

$\operatorname{Circ}(14 ;\{ \pm 1, \pm 3\})$

$\operatorname{Circ}(13 ;\{ \pm 1, \pm 3, \pm 4\})$

Homework 1

H1:

- Determine the largest integer s for which there exists a connected s-arc-transitive circulant of valency at least three.
- Then classify all connected s-arc transitive circulants of valency at least three.

Examples

- Generalized Petersen graphs $G(n, k), k \leq \frac{n-1}{2}$.
- In 1971 Frucht, Graver and Watkins proved the following:
- Let $A(n, k)=\operatorname{Aut} G(n, k)$ and let $B(n, k) \leq A(n, k)$ be the subgroup fixing the set of "spokes".
- Let ρ, σ, τ be defined by:
- $u_{i} \rho=u_{i+1}, v_{i} \rho=v_{i+1}$
- $u_{i} \sigma=v_{k i}, v_{i} \sigma=u_{k i}$
- $u_{i} \tau=u_{-i}, v_{i} \tau=v_{-i}$
- Then
- if $k^{2} \not \equiv \pm 1(\bmod n)$ then $B(n, k)=\langle\rho, \tau\rangle=D_{2 \cdot n}$.
- if $k^{2} \equiv 1(\bmod n)$ then $B(n, k)=\langle\rho, \sigma, \tau\rangle$, where $\sigma \tau=\tau \sigma$ and $\sigma^{-1} \rho \sigma=\rho^{k}$.
- if $k^{2} \equiv-1(\bmod n)$ then $B(n, k)=\langle\rho, \sigma\rangle$, where $\sigma^{-1} \rho \sigma=\rho^{k}$.
- $A(n, k)=B(n, k)$ unless $(n, k) \in\{(4,1),(5,2),(8,3),(10,2),(10,3),(12,5),(24,5)\}$.

Examples

- It follows that

Proposition

The graph $G(n, k)$ is vertex-transitive iff $k^{2} \equiv \pm 1(\bmod n)$ or $n=10, k=2$.

- It turns out that the above seven exceptional graphs are edge-transitive. Hence

Proposition

The graph $G(n, k)$ is edge-transitive (and thus arc-transitive) iff $(n, k) \in\{(4,1),(5,2),(8,3),(10,2),(10,3),(12,5),(24,5)\}$.

- In fact, all of the above seven graphs are 2-arc-transitive and the Petersen graph $G(5,2)$ and the Desargues graph $G(10,3)$ are also 3-arc-transitive.

Semisymmetric graphs

Proposition

A semisymmetric graph is bipartite.

Proof.

- We can assume that the graph X is connected.
- Take any $u v \in E(X)$, let \mathcal{U} and \mathcal{V} be the Aut X-orbits of u and v, respectively.
- Let $w \in V(X)$. There exists $e \in E(X)$ incident with w.
- As X is edge-transitive, some $\varphi \in$ Aut X maps $u v$ to e.
- Hence, $w \in \mathcal{U} \cup \mathcal{V}$, and so, as X is not vertex-transitive, Aut X has two orbits, namely \mathcal{U} and \mathcal{V}, on $V(X)$.
- Clearly \mathcal{U} and \mathcal{V} are independent sets, and so X is bipartite.

Semisymmetric graphs

- It turns out that the smallest semisymmetric graph is the so-called Folkman graph. It is tetravalent and has 20 vertices. The Folkman graph is of girth 4. Its automorphism group is of order 3840 .
- It turns out that the smallest cubic semisymmetric graph is the so-called Gray graph having 54 vertices. One of its LCF notations is $[7,-7,13,-13,25,-25]^{9}$. The Gray graph is of girth 8. Its automorphism group is of order 1296.

The Folkman graph

The Gray graph

Homework 2

H2:

- Show that the Folkman graph is indeed semisymmetric.

An open problem

- There are many interesting open problems about vertex-transitive graphs.
- Probably the most famous is the question of Lovász about the existence of Hamilton paths in vertex-transitive graphs.
- This question has been open for almost forty years.
- So far no example not having such a path is known.
- In fact, only four (excluding the trivial K_{2}) vertex-transitive graphs not possessing a Hamilton cycle are known. These are the Petersen graph, the Coxeter graph and the two graphs obtained from them by "replacing each vertex by a triangle".
- None of these four graphs is a Cayley graph.

An open problem

- Many papers on the subject.
- Complete answers only for graphs of certain order: $p, 2 p, 3 p, 4 p, 5 p, 6 p, p^{2}, p^{3}, p^{4}, 2 p^{2}$.
- The following result by Dobson, Gavlas, Morris ${ }^{2}$ is also of interest:

Theorem

Every connected vertex-transitive graph, other than the Petersen graph, whose automorphism group contains a transitive subgroup with a cyclic commutator subgroup of prime-power order, has a Hamilton cycle.

An open problem

- How do we tackle such a problem?
- Semiregular automorphisms.
- An automorphism of a graph of order $m n$ is (m, n)-semiregular if it has m orbits of length n.

Proposition (Marušič, 1981)

A vertex transitive graph of order $m p$, where $m \leq p, p$ a prime, admits an (m, p)-semiregular automorphism.

- Why semiregular automorphisms?

Using semiregular automorphisms

- We show that, except for the Petersen graph, every vertex-transitive graph of order $2 p$ has a Hamilton cycle.
- We can assume that $p \geq 3$.
- By the above proposition X has a $(2, p)$-semiregular automorphism. Let U and V be its two orbits.
- If the bipartite subgraph $[U, V]$ is of valency greater than 1 , then X clearly has a Hamilton cycle.
- We can thus assume that $[U, V]$ is a matching and hence each of the circulants [U] and $[V]$ is connected.

Using semiregular automorphisms

- It is easy to see that $[U]$ is Hamilton-connected if it is not a cycle. (Chen-Quimpo)
- We can thus assume that $X \cong G(p, k)$ is a generalized Petersen graph.
- Thus $k^{2} \equiv \pm 1(\bmod n)$.
- K. Bannai (1978) showed that $G(n, k)$ has a Hamilton cycle whenever $\operatorname{gcd}(n, k)=1$ except when $n \equiv 5(\bmod 6)$ and $k \in\left\{2, \frac{n-1}{2}\right\}$.
- Thus, if X is not the Petersen graph, it contains a Hamilton cycle.

Constructing vertex-transitive graphs

- Let G be a transitive permutation group acting on the set X.
- Let \mathcal{O} be a union of orbitals of G on X (orbits of G on $X \times X)$.
- The generalized orbital (di)graph $\operatorname{GenOrb}(G, X, \mathcal{O})$ relative to G, X and \mathcal{O} is then the (di)graph with vertex set X and edge set \mathcal{O}.
- The digraph $\operatorname{GenOrb}(G, X, \mathcal{O})$ is a graph iff \mathcal{O} coincides with $\mathcal{O}^{*}=\{(y, x) \mid(x, y) \in \mathcal{O}\}$.
- The digraph $\operatorname{GenOrb}(G, X, \mathcal{O})$ is of course vertex-transitive.

Constructing vertex-transitive graphs

- Let G be an arbitrary group and let H be its subgroup.
- Then G acts on $G / H=\{H g \mid g \in G\}$ by right multiplication.
- Let \mathcal{O} be a union of orbits of H on G / H, that is, \mathcal{O} is a union of double cosets HgH .
- The generalized orbital (di)graph $\operatorname{GenOrb}(G, H, \mathcal{O})$ relative to G, H and \mathcal{O} is then the (di)graph with vertex set G / H and where $\mathrm{Hg} \rightarrow \mathrm{Hg}^{\prime} \Longleftrightarrow g^{\prime} g^{-1} \in \mathcal{O}$.
- Every vertex-transitive graph is a generalized orbital graph of some group - its automorphism group.

For example:

- Let $G=A l t(5)$ be the alternating group of order 60.
- Let $H=\langle(123),(12)(45)\rangle=$ $\{i d,(123),(132),(12)(45),(13)(45),(23)(45)\}$.
- Let $\mathcal{O}=H(24)(35) H$.
- The graph $\operatorname{GenOrb}(G, H, \mathcal{O})$ is isomorphic to $G(5,2)$.

Half-arc-transitive graphs

- Tutte (1966): half-arc-transitive \Rightarrow even valency.
- The question of the existence of half-arc-transitive graphs of prescribed even valency.
- Bower (1970): they exist.
- Doyle (1976) and Holt (1981): found one of order 27.
- This is in fact the smallest half-arc-transitive graph.

Tetravalent half-arc-transitive graphs

- Smallest possible valency is 4.
- Many papers dealing with these graphs.
- Even with this restriction the classification is presently beyond our reach.
- There has been some progress.

We cannot flip an edge

Proposition (Proposition 2.1.(Marušič 1998))

Let X be a G-half-arc-transitive graph for some $G \leq \operatorname{Aut} X$.
Then no element of G interchanges a pair of adjacent vertices of X.

- Two (paired) oriented graphs $D_{G}(X)$ correspond to a G-half-arc-transitive graph.
- Fix an edge $u v$ and choose one of the two orientations.
- As X is G-edge transitive, we can map any edge $x y$ to $u v$.
- By the above proposition always in "the same way".

Alternating cycles and attachment number

- In tetravalent half-arc-transitive graphs we thus have alternating cycles.
- Half of their length is called the radius of the graph in question.
- Any two nondisjoint alternating cycles meet in the same number of vertices.
- This number is called the attachment number of the graph in question.
- The relation between these two numbers is very important.

The approach to classification

Theorem (Marušič, Praeger, 1999)

If X is a connected tetravalent G-half-arc-transitive graph, then either X is tightly G-attached or it is a cover over a loosely or antipodally G-attached graph.

- We thus need to classify these three special families.
- Then investigate these covers.
- So far the first step has been done: the classification of tightly attached graphs has been completed.

The two theorems

Theorem (Marušič, 1998)

A connected tetravalent graph X is a tightly attached half-arc-transitive graph of odd radius n if and only if $X \cong \mathcal{X}_{o}(m, n ; r)$, where $m \geq 3$ and $r \in \mathbb{Z}_{n}^{*}$ satisfies $r^{m}= \pm 1$, and moreover none of the following conditions is fulfilled:
(i) $r^{2}= \pm 1$;
(ii) $(m, n ; r) \in\{(3,7 ; 2),(3,7 ; 4)\}$;
(iii) $(m, n ; r)=\left(6,7 n_{1} ; r\right)$, where $n_{1} \geq 1$ is odd and coprime to 7, $r^{6}=1$, and there exists a unique solution
$r^{\prime} \in\left\{r,-r, r^{-1},-r^{-1}\right\}$ of the equation $2-x-x^{2}=0$ such that $7\left(r^{\prime}-1\right)=0$ and $r^{\prime} \equiv 5(\bmod 7)$.

The two theorems

Theorem (Šparl, 200?)

A connected tetravalent graph X is a tightly attached half-arc-transitive graph of even radius n if and only if $X \cong \mathcal{X}_{e}(m, n ; r, t)$, where $m \geq 4$ is even, $r \in \mathbb{Z}_{n}^{*}, t \in \mathbb{Z}_{n}$ are such that $r^{m}=1, t(r-1)=0$ and $1+r+\cdots+r^{m-1}+2 t=0$, and none of the following two conditions is fulfilled:
(i) $r^{2}= \pm 1$;
(ii) $m=6, n=14 n_{1}$, where n_{1} is coprime to 7 , and there exists a unique solution $r^{\prime} \in\left\{r,-r, r^{-1},-r^{-1}\right\}$ of the equation $2-x-x^{2}=0$ such that $r^{\prime} \equiv 5(\bmod 7)$ and $2+r^{\prime}+t^{\prime}=0$, where $t^{\prime}=t$ in case $r^{\prime} \in\left\{r, r^{-1}\right\}$ and $t^{\prime}=t+r+r^{3}+\cdots+r^{m-1}$ in case $r^{\prime} \in\left\{-r,-r^{-1}\right\}$.

The odd radius graphs

- For every pair of integers $m, n \geq 3, n$ odd, and for any $r \in \mathbb{Z}_{n}^{*}$ for which $r^{m}= \pm 1$ let $\mathcal{X}_{o}(m, n ; r)$ be the graph with
- vertex set $V=\left\{u_{i}^{j} \mid i \in \mathbb{Z}_{m}, j \in \mathbb{Z}_{n}\right\}$
- edges defined by $u_{i}^{j} \sim u_{i+1}^{j \pm r^{i}}$.
- These graphs admit a half-arc-transitive subgroup of automorphisms.

The even radius graphs

- For every pair of even integers $m, n \geq 4$ and for every $r \in \mathbb{Z}_{n}^{*}$ and $t \in \mathbb{Z}_{n}$, satisfying $r^{m}=1, t(r-1)=0$ and $1+r+\cdots+r^{m-1}+2 t=0$ let $\mathcal{X}_{e}(m, n ; r, t)$ be the graph with
- vertex set $V=\left\{u_{i}^{j} \mid i \in \mathbb{Z}_{m}, j \in \mathbb{Z}_{n}\right\}$
- edges given by the following adjacencies:

$$
u_{i}^{j} \sim \begin{cases}u_{i+1}^{j}, u_{i+1}^{j+r^{i}} & ; i \in \mathbb{Z}_{m} \backslash\{m-1\}, j \in \mathbb{Z}_{n} \\ u_{0}^{j+t}, u_{0}^{j+r^{m-1}+t} & ; i=m-1, j \in \mathbb{Z}_{n} .\end{cases}
$$

- These graphs admit a half-arc-transitive subgroup of automorphisms.

The smallest even radius graph

Primož Šparl
Lecture no. 7

Some tightly attached graphs with small girth

- Girth 3:

$$
\begin{aligned}
& \text { - } \mathcal{X}_{0}(3,13 ; 3) \\
& \text { - } \mathcal{X}_{0}(3,19 ; 7) \\
& \text { - } \mathcal{X}_{0}(3,21 ; 4)
\end{aligned}
$$

- Girth 4:
- $\mathcal{X}_{0}(4,15 ; 2)$
- $\mathcal{X}_{0}(4,35 ; 8)$
- $\mathcal{X}_{e}(4,20 ; 3,0)$
- $\mathcal{X}_{e}(4,20 ; 7,10)$
- $\mathcal{X}_{e}(4,30 ; 23,0)$
- Girth 5:

$$
\begin{aligned}
& \text { - } \mathcal{X}_{0}(3,9 ; 2) \\
& \text { - } \mathcal{X}_{0}(5,11 ; 2) \\
& \text { - } \mathcal{X}_{0}(5,11 ; 3)
\end{aligned}
$$

- Girth 6:
- $\mathcal{X}_{o}(6,9 ; 2)$
- $\mathcal{X}_{o}(9,7 ; 2)$
- $\mathcal{X}_{0}(4,17 ; 2)$
- $\mathcal{X}_{e}(6,14 ; 5,0)$
- $\mathcal{X}_{e}(6,18 ; 7,15)$
- $\mathcal{X}_{e}(6,26 ; 9,0)$
- $\mathcal{X}_{e}(6,26 ; 23,0)$
- Girth 8:
- $\mathcal{X}_{0}(8,17 ; 3)$
- $\mathcal{X}_{0}(8,17 ; 5)$
- $\mathcal{X}_{e}(6,18 ; 7,6)$
- $\mathcal{X}_{e}(4,30 ; 13,25)$
- $\mathcal{X}_{e}(8,16 ; 11,0)$
- $\mathcal{X}_{e}(8,16 ; 11,8)$

Homework 3

H3:

- Show that there exists no half-arc-transitive Cayley graph of an Abelian group.

