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Motivation
Classification and regression of high dimensional data given few samples.
The “large p, small n” paradigm.
Tikhonov regularization/shrinkage estimators (for example ridge regression or SVMs) have
been successful.
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Motivation
Classification and regression of high dimensional data given few samples.
The “large p, small n” paradigm.
Tikhonov regularization/shrinkage estimators (for example ridge regression or SVMs) have
been successful.

In a number of problems classical questions from statistical modeling have been revived
variable saliency/significance
coordinate covariation

However in the “large p, small n” paradigm.

We formulate the problem of learning coordinate covariation and relevance in the framework
of Tikhonov regularization or shrinkage estimation.
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Global shrinkage estimators
X ⊆ IRp is a compact metric space, Y ∈ {−1, 1}, and Z = X × Y
a sample z =

˘

(xi, yi)
¯n

i=1
∈ (X × Y)n
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X ⊆ IRp is a compact metric space, Y ∈ {−1, 1}, and Z = X × Y
a sample z =

˘

(xi, yi)
¯n

i=1
∈ (X × Y)n

a hypothesis space H is a set of functions f : X → IR

a loss functional V (f(x), y) : IR × IR → IR+
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Global shrinkage estimators
X ⊆ IRp is a compact metric space, Y ∈ {−1, 1}, and Z = X × Y
a sample z =

˘

(xi, yi)
¯n

i=1
∈ (X × Y)n

a hypothesis space H is a set of functions f : X → IR

a loss functional V (f(x), y) : IR × IR → IR+

a penalty or smoothness functional Ω : H → IR+ on H for example Ω(f) = ‖f‖2
K

Estimation of Gradients and Coordinate Covariation in Classification – p. 3/24



J � I

Global shrinkage estimators
fV
z,λ can be interpreted as a MAP estimate

fV
z,λ = arg min

f∈H

n 1

n

n
X

i=1

V (yi, f(xi)) + λΩ(f)
o

where λ > 0
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Reproducing Kernel Hilbert Spaces
K : X × X → IR be continuous, symmetric and positive semidefinite is a Mercer kernel, for
example

K(w, v) =
1√
2πσ

exp(−‖w − v‖2/2σ2)
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Reproducing Kernel Hilbert Spaces

RKHS is the linear span

HK = span{Kx := K(x, ·) : x ∈ X}

〈Kv, Ku〉K = K(u, v)
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Reproducing Kernel Hilbert Spaces

RKHS is the linear span

HK = span{Kx := K(x, ·) : x ∈ X}

〈Kv, Ku〉K = K(u, v)

reproducing property
〈Kx, f〉K = f(x), ∀x ∈ X , f ∈ HK
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Reproducing Kernel Hilbert Spaces

RKHS is the linear span

HK = span{Kx := K(x, ·) : x ∈ X}

〈Kv, Ku〉K = K(u, v)

reproducing property
〈Kx, f〉K = f(x), ∀x ∈ X , f ∈ HK

fV
z,λ = arg min

f∈HK

n 1

n

n
X

i=1

V (yi, f(xi)) + λ‖f‖2
K

o

fV
z,λ(x) =

n
X

i=1

ciK(xi, x)

optimization over {ci}n
i=1 ∈ IRn
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Classification
Y = {−1, 1} and sgn(f) : X → Y
loss function: V (f(x), y) = φ(yf(x)) := log

`

1 + e−yf(x)
´

fV
z,λ = arg min

f∈HK

n 1

n

n
X

i=1

log
`

1 + e−yif(xi)
´

+ λ‖f‖2
K

o
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Classification
Y = {−1, 1} and sgn(f) : X → Y
loss function: V (f(x), y) = φ(yf(x)) := log

`

1 + e−yf(x)
´

fV
z,λ = arg min

f∈HK

n 1

n

n
X

i=1

log
`

1 + e−yif(xi)
´

+ λ‖f‖2
K

o

classification error
R(sgn(f)) = Prob{sgn(f(x)) 6= y}

the Bayes optimal classifier

sgn(fρ(x)) = 1 if ρ(y = 1|x) ≥ ρ(y = −1|x) and − 1 otherwise.

fρ(x) = log

»

ρ(y = 1|x)

ρ(y = −1|x)

–

.
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Classification
Y = {−1, 1} and sgn(f) : X → Y
loss function: V (f(x), y) = φ(yf(x)) := log

`

1 + e−yf(x)
´

fV
z,λ = arg min

f∈HK

n 1

n

n
X

i=1

log
`

1 + e−yif(xi)
´

+ λ‖f‖2
K

o

classification error
R(sgn(f)) = Prob{sgn(f(x)) 6= y}

the Bayes optimal classifier

sgn(fρ(x)) = 1 if ρ(y = 1|x) ≥ ρ(y = −1|x) and − 1 otherwise.

fρ(x) = log

»

ρ(y = 1|x)

ρ(y = −1|x)

–

.

Convergence: as λ = λ(n) → 0 as n → ∞

R(sgn(fV
z,λ)) → R(sgn(fρ))
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Learning the gradient
x = (x1, x2, . . . , xp)T ∈ IRp and the gradient of fρ

∇fρ =

„

∂fρ

∂x1
, . . . ,

∂fρ

∂xp

«T
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Learning the gradient
x = (x1, x2, . . . , xp)T ∈ IRp and the gradient of fρ

∇fρ =

„

∂fρ

∂x1
, . . . ,

∂fρ

∂xp

«T

use of the gradient

variable selection:
‚

‚

‚

∂fρ

∂xi

‚

‚

‚

coordinate covariation:
D

∂fρ

∂xi ,
∂fρ

∂xj

E
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Formulating the algorithm
Taylor expanding fρ(u)

fρ(x) ≈ fρ(u) + ∇fρ(x) · (x − u) for x ≈ u.
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Formulating the algorithm
Taylor expanding fρ(u)

fρ(x) ≈ fρ(u) + ∇fρ(x) · (x − u) for x ≈ u.

Estimate fρ by g and ∇fρ by ~f = (f1, f2, . . . , fp)T : X → IRp.

fρ(x) ≈ g(u) + ~f(x) · (x − u) for x ≈ u.
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Elements for algorithm
locality: weight by a Gaussian

wi,j = w
(s)
i,j =

1

sp+2
e
−

|xi−xj |2

2s2 = w(xi − xj), i, j = 1, . . . , n
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locality: weight by a Gaussian

wi,j = w
(s)
i,j =

1

sp+2
e
−

|xi−xj |2

2s2 = w(xi − xj), i, j = 1, . . . , n

cost function: φ(η) = log
`

1 + e−η
´

Ez(g, ~f) =
1

n2

n
X

i,j=1

w
(s)
i,j φ

“

yi(g(xj) + ~f(xi) · (xi − xj))
”

.
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Elements for algorithm
locality: weight by a Gaussian

wi,j = w
(s)
i,j =

1

sp+2
e
−

|xi−xj |2

2s2 = w(xi − xj), i, j = 1, . . . , n

cost function: φ(η) = log
`

1 + e−η
´

Ez(g, ~f) =
1

n2

n
X

i,j=1

w
(s)
i,j φ

“

yi(g(xj) + ~f(xi) · (xi − xj))
”

.

regularization: Hp
K is an p-fold of HK and ~f = (f1, f2, . . . , fp)T with f` ∈ HK

〈~f,~g〉K =

p
X

`=1

〈f`, g`〉K and ‖~f‖2
K =

p
X

`=1

‖f`‖2
K
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Gradient algorithms
Definition 1. Given a sample z we can estimate the classification function, gz, and its gradient, ~fz, as follows:

(gz, ~fz) = arg min
(g,~f)∈H

p+1

K

h

Ez(g, ~f) + λ1‖g‖2
K + λ2‖~f‖2

K

i

,

where s, λ1, λ2 > 0 are the regularization parameters.
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Remark
Why not estimate fρ and then take partial derivatives ?
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Remark
Why not estimate fρ and then take partial derivatives ?

When we obtain an approximation of fρ it is in a particular RKHS.
However, its partial derivatives are not.
Hence, there is no natural ways to find the correlations.
For example for the Gaussian kernel, there are no natural inner products among its partial
derivatives, especially when there are no natural coordinates for the underlying manifold.
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Representer theorems
Proposition 1. Given a sample z ∈ Zm the solution takes the form and exists

gz(x) =
n

X

i=1

αi,zK(x, xi) and ~fz(x) =
n

X

i=1

ci,zK(x, xi)

with cz = (c1,z, . . . , cn,z) ∈ IRp×n and αz = (α1,z, ..., αn,z)T ∈ IRn.
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Representer theorems
Proposition 2. Given a sample z ∈ Zm the solution takes the form and exists

gz(x) =
n

X

i=1

αi,zK(x, xi) and ~fz(x) =
n

X

i=1

ci,zK(x, xi)

with cz = (c1,z, . . . , cn,z) ∈ IRp×n and αz = (α1,z, ..., αn,z)T ∈ IRn.

The coefficients are computed using Newton’s method in what naïvely looks like an
optimization problem in IRnp×np which is prohibitive.
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Reducing the matrix size
The functional in matrix form

Φ(C, α) =
1

m2

n
X

i,j=1

wi,jφ
`

yi(kjα + kiC
T (xi − xj))

´

+
λ

2

`

αT Kα + Tr(CKCT )
´

,

We solve for C, α by setting
∇Φ(α, C) = 0

using Newton’s method.
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Reducing the matrix size
The functional in matrix form

Φ(C, α) =
1

m2

n
X

i,j=1

wi,jφ
`

yi(kjα + kiC
T (xi − xj))

´

+
λ

2

`

αT Kα + Tr(CKCT )
´

,

We solve for C, α by setting
∇Φ(α, C) = 0

using Newton’s method.

A key quantity in the optimization is the data matrix

Mx = (x1 − xn, x2 − xn, . . . , xn−1 − xn, xn − xn) ∈ IRp×n.

it has rank d ≤ n − 1 so our optimization is in IRnd×nd with runtime of O(nd2) and memory
O(np).
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Convergence to the gradient
Proposition 3. If for some constants cρ > 0 and 0 < θ ≤ 1 the marginal distribution ρ

X
satisfies

ρ
X

({x ∈ X : d(x, ∂X ) < s}) ≤ cρs,

the density p(x) of ρ
X

exists and satisfies

sup
x∈X

p(x) ≤ cρ and |p(x) − p(u)| ≤ cρ|x − u|θ, ∀u, x ∈ X ,

then with probability 1 − δ

‖~fz −∇fρ||ρ
X

≤ C log

„

2

δ

«

n−1/p

‖gz − fρ||ρ
X

≤ C log

„

2

δ

«

n−1/p.
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Quantities of interest
Definition 2. The relative magnitude of the norm for the variables is defined as

sρ
` =

‖
`

~fz
´

`
‖K

`
Pp

j=1 ‖
`

~fz
´

j
‖2

K

´1/2
, ` = 1, . . . , p.
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Quantities of interest
Definition 3. The relative magnitude of the norm for the variables is defined as

sρ
` =

‖
`

~fz
´

`
‖K

`
Pp

j=1 ‖
`

~fz
´

j
‖2

K

´1/2
, ` = 1, . . . , p.

Definition 4. The empirical covariance matrix (ECM), Ξz, is the p × p matrix of inner products of the
gradient between two coordinates

Cov(~fz) :=
h

〈
`

~fz
´

k
,
`

~fz
´

l
〉K

ip

k,l=1
=

n
X

i,j=1

ci,zcT
j,zK(xi, xj).
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Linear example
Samples from class +1 were drawn from

xj ∼ N (1.5, 1), for j = 1, . . . , 10,

xj ∼ N (−3, 1), for j = 11, . . . , 20,

xj ∼ N (0, σnoise), for j = 21, . . . , 80,

Samples from class −1 were drawn from

xj ∼ N (1.5, 1), for j = 41, . . . , 50,

xj ∼ N (−3, 1), for j = 51, . . . , 60,

xj ∼ N (0, σnoise)), for j = 1, . . . , 40, 61, . . . , 80.
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Linear example
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Linear example
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Linear example
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Nonlinear example
Samples from class +1 were drawn from

(x1, x2) = (r sin(θ), r cos(θ)), where r ∼ U [0, 1] and θ ∼ U [0, 2π],

xj ∼ N (0.0, .2), for j = 3, . . . , 200,

where U [a, b] is the uniform distribution with support on the interval [a, b]. Samples from
class −1 were drawn from

(x1, x2) = (r sin(θ), r cos(θ)), where r ∼ U [2, 3] and θ ∼ U [0, 2π],

xj ∼ N (0.0, .2), for j = 3, . . . , 200.
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Nonlinear example
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Nonlinear example
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Nonlinear example
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Gene expression data
Expression (number of copies of mRNA) for 7, 129 genes and ESTs were measured over 73

patients with either AML (myeloid leukemia) or ALL (lymphoblastic leukemia)

{(xi, yi)}73
i=1 with x ∈ R

7129 and y ∈ {−1, 1}

38 samples were used for the training set, 35 for the test set
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Gene expression data
Expression (number of copies of mRNA) for 7, 129 genes and ESTs were measured over 73

patients with either AML (myeloid leukemia) or ALL (lymphoblastic leukemia)

{(xi, yi)}73
i=1 with x ∈ R

7129 and y ∈ {−1, 1}

38 samples were used for the training set, 35 for the test set

genes (S) 50 100 200 300 400 500 1,000 3,000 7,129
test errors 2 1 1 1 1 1 1 1 2
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Decay of norms
The decay of sρ

(`)
is a measure of how many features are significant
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Decay of norms
Fisher score:

t` =
|µ̂AML

` − µ̂ALL
` |

σ̂AML
` + σ̂ALL

`

,

sF
` =

t`
`
Pn

p=1 t2p
´1/2
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Decay of norms
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Restriction to a manifold
Assume the data is concentrated on a manifold M ⊂ IRp with M ∈ IRd.

Given a smooth orthonormal vector field {e1, . . . , ed} we can define the gradient on the
manifold ∇Mf = (e1f, . . . , edf).
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Restriction to a manifold
Assume the data is concentrated on a manifold M ⊂ IRp with M ∈ IRd.

Given a smooth orthonormal vector field {e1, . . . , ed} we can define the gradient on the
manifold ∇Mf = (e1f, . . . , edf).

For p ∈ U ⊂ M a chart u : U → R
d satisfying ∂

∂ui (p) = ei(p) exists.

The Taylor expansion on the manifold around p

f(q) ≈ f(p) + ∇Mf(p) · (u(q) − u(p)) for q ≈ p.
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Restriction to a manifold
Assume the data is concentrated on a manifold M ⊂ IRp with M ∈ IRd.

Given a smooth orthonormal vector field {e1, . . . , ed} we can define the gradient on the
manifold ∇Mf = (e1f, . . . , edf).

For p ∈ U ⊂ M a chart u : U → R
d satisfying ∂

∂ui (p) = ei(p) exists.

The Taylor expansion on the manifold around p

f(q) ≈ f(p) + ∇Mf(p) · (u(q) − u(p)) for q ≈ p.

Neither M nor a local expression of M are given.
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Restriction to a manifold
Assume the data is concentrated on a manifold M ⊂ IRp with M ∈ IRd.

Given a smooth orthonormal vector field {e1, . . . , ed} we can define the gradient on the
manifold ∇Mf = (e1f, . . . , edf).

The Taylor expansion on the manifold around p

f(q) ≈ f(p) + ∇Mf(p) · (u(q) − u(p)) for q ≈ p.

Assume an an embedding ϕ : M → IRp.
{(pi, yi)}n

i=1 ∈ M×Y are drawn from the manifold
however we are not given a local expression of pi but its image xi = ϕ(pi) ∈ IRp.
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Restriction to a manifold
Assume the data is concentrated on a manifold M ⊂ IRp with M ∈ IRd.

Given a smooth orthonormal vector field {e1, . . . , ed} we can define the gradient on the
manifold ∇Mf = (e1f, . . . , edf).

The Taylor expansion on the manifold around p

f(q) ≈ f(p) + ∇Mf(p) · (u(q) − u(p)) for q ≈ p.

The Taylor expansion on the manifold around x in terms of f ◦ ϕ−1 ∈ R
p

(f ◦ ϕ−1)(u) − (f ◦ ϕ−1)(x) ≈ ∇(f ◦ ϕ−1)(x) · (u − x) for u ≈ x.
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Restriction to a manifold
Assume the data is concentrated on a manifold M ⊂ IRp with M ∈ IRd.

Given a smooth orthonormal vector field {e1, . . . , ed} we can define the gradient on the
manifold ∇Mf = (e1f, . . . , edf).

Due to this equivalence our gradient algorithm works in the manifold setting without any
changes.

We can prove a rate of convergence of

‖~fz −∇fρ||ρ
X

≤ C log

„

2

δ

«

n−1/d
M

‖gz − fρ||ρ
X

≤ C log

„

2

δ

«

n−1/d
M .
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Dimensionality reduction
The empirical covariance matrix (ECM), Ξz, is the p × p matrix of inner products of the gradient
between two coordinates

Ξz :=
h

〈
`

~fz
´

k
,
`

~fz
´

l
〉K

ip

k,l=1
.
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Dimensionality reduction
The empirical covariance matrix (ECM), Ξz, is the p × p matrix of inner products of the gradient
between two coordinates

Ξz :=
h

〈
`

~fz
´

k
,
`

~fz
´

l
〉K

ip

k,l=1
.

The covariance matix can be used in the same spirit as the covariance of the data (design)
matrix is used in Principle Components Analysis (PCA) to select relevant features.
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Dimensionality reduction
The empirical covariance matrix (ECM), Ξz, is the p × p matrix of inner products of the gradient
between two coordinates

Ξz :=
h

〈
`

~fz
´

k
,
`

~fz
´

l
〉K

ip

k,l=1
.

Supervised non-linear dimensionality reduction in the spirit of LLE, ISOMAP, Laplacian
Eigenmaps, Hessian Eigenmaps.
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Dimensionality reduction
The empirical covariance matrix (ECM), Ξz, is the p × p matrix of inner products of the gradient
between two coordinates

Ξz :=
h

〈
`

~fz
´

k
,
`

~fz
´

l
〉K

ip

k,l=1
.

Proposition 4. Given f on R
p and assume its gradient exists. A vector v ∈ IRp is the k-th important feature if

‖v‖ = 1 and there exist {vi}k−1
i=1 with ‖vi‖ = 1 such that

(1) for all w satisfying ‖w‖ = 1 and w ⊥ vi, there holds ‖w · ∇f‖∞ ≤ ‖vi · ∇f‖∞,

(2) v = arg max ‖w · ∇f‖∞ s.t. ‖w‖ = 1 and w ⊥ vi,

Replace the L∞ norm with the RKHS norm, the k-th most important feature is the eigenvector corresponding to
the k-th eigenvalue of the covariance matrix Ξ.
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Dimensionality reduction
The empirical covariance matrix (ECM), Ξz, is the p × p matrix of inner products of the gradient
between two coordinates

Ξz :=
h

〈
`

~fz
´

k
,
`

~fz
´

l
〉K

ip

k,l=1
.

Proposition 5. Given f on R
p and assume its gradient exists. A vector v ∈ IRp is the k-th important feature if

‖v‖ = 1 and there exist {vi}k−1
i=1 with ‖vi‖ = 1 such that

(1) for all w satisfying ‖w‖ = 1 and w ⊥ vi, there holds ‖w · ∇f‖∞ ≤ ‖vi · ∇f‖∞,

(2) v = arg max ‖w · ∇f‖∞ s.t. ‖w‖ = 1 and w ⊥ vi,

Replace the L∞ norm with the RKHS norm, the k-th most important feature is the eigenvector corresponding to
the k-th eigenvalue of the covariance matrix Ξ.

This proposition suggests that we project our data matrix onto the top k-eigenvectors. This
space should reflect the geometery of the classification or regression function on the
manifold.
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Dimensionality reduction
The empirical covariance matrix (ECM), Ξz, is the p × p matrix of inner products of the gradient
between two coordinates

Ξz :=
h

〈
`

~fz
´

k
,
`

~fz
´

l
〉K

ip

k,l=1
.

Proposition 6. Given f on R
p and assume its gradient exists. A vector v ∈ IRp is the k-th important feature if

‖v‖ = 1 and there exist {vi}k−1
i=1 with ‖vi‖ = 1 such that

(1) for all w satisfying ‖w‖ = 1 and w ⊥ vi, there holds ‖w · ∇f‖∞ ≤ ‖vi · ∇f‖∞,

(2) v = arg max ‖w · ∇f‖∞ s.t. ‖w‖ = 1 and w ⊥ vi,

Replace the L∞ norm with the RKHS norm, the k-th most important feature is the eigenvector corresponding to
the k-th eigenvalue of the covariance matrix Ξ.

Since
Ξz = cT

z
Kcz

the n nonzero eigenvalues and corresponding eigenvectors of can be computed without
constructing the p × p matrix, in order O(n2p + n3) time and O(p × n) memory.
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Discussion
Still lots of work left:

Fully Bayesian model: compute the full posterior using MCMC.
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Discussion
Still lots of work left:

Fully Bayesian model: compute the full posterior using MCMC.
Semi-supervised version: implement a semi-supervised version.
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Discussion
Still lots of work left:

Fully Bayesian model: compute the full posterior using MCMC.
Semi-supervised version: implement a semi-supervised version.
Relation to information geometry: Tthe covariance matrix is a particular case of the
non-parametric analog of Fisher’s information matrix.
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