
An Experimental Comparison of RDF
Data Management Approaches in a

SPARQL Benchmark Scenario

7th International Semantic Web Conference
Karlsruhe, Germany

October 28, 2008

Speaker: Michael Schmidt
joint work with T. Hornung, N. Küchlin, G. Lausen, and C. Pinkel

Motivation
•  Efficient evaluation of SPARQL is a non-trivial task

•  SPARQL evaluation is PSPACE-complete

•  Homogeneous data format poses potential for
severe bottlenecks (as we will discuss later)

•  Several optimization approaches have been
made, but use their own, user-defined
experimental setting for verification

Introduction

Contributions
•  SPARQL Performance Benchmark SP2Bench

•  Data Generator + Benchmark Queries

•  Queries pose various challenges to SPARQL engines

•  Allows us to compare optimization approaches

•  Available online at

http://dbis.informatik.uni-freiburg/index.php?project=SP2B

Part I

Introduction

Contributions
•  Evaluation of existing RDF management approaches

•  Focus on translations into relational context

•  Comparison to native engine, relational setting

•  Several new findings

•  Limitations of existing evaluation approaches

•  Severe gap to native relational data processing

Part II

Part III

Introduction

SP2Bench Scenario
•  Domain: DBLP bibliographic data

•  Contains bilbliographic entities such as articles,
journals, proceedings, inproceedings…

•  DBLP fits „RDF philosophy“

•  RDF designed for representing meta data

•  Many social-world distributions found in DBLP

Part I – The SP2Bench SPARQL Performance Benchmark

M. Schmidt, T. Hornung, G. Lausen, C. Pinkel. SP2Bench - A SPARQL Performance Benchmark. In ICDE’09.
Ley, M.: DBLP Database. http://www.informatik.uni- trier.de/~ ley/db/.

Part I – The SP2Bench SPARQL Performance Benchmark

#instances per year for
each document type

real DBLP
vs.

approx. in SP2Bench

Part I – The SP2Bench SPARQL Performance Benchmark

Data with Real-world Characteristics

•  Other characteristics that we consider

•  Citation system

•  Incoming citations per publication
 (follows a power law distribution)

•  Outgoing citations per publication

•  Structure of documents

•  ...

Part I – The SP2Bench SPARQL Performance Benchmark

Data with Real-world Characteristics

SP2Bench SPARQL Queries
•  Meaningful requests on top of the data

•  Vary in a broad range of characteristics

•  Different operator constellation, RDF access
patterns, and complexity

•  Result size (small, large, linear, ...)

•  Number of variables

•  ...

Part I – The SP2Bench SPARQL Performance Benchmark

Storage Schemes for RDF
•  Focus of this work: translation into

relational context and evaluation of queries
with conventional SQL database systems

• We consider two different approaches

•  Simple Triple Table Approach

•  Vertical Partitioning

Part II – Experimental Setting

Triple Table Approach
•  Simple and straightforward storage

scheme for RDF data

•  All data stored in a single relation
Triples(subject, predicate, object)

subject predicate object

Book1 type Book

Book1 title “DBMS”

Book1 issued “2002”

Book1 author Person1

Book1 author Person2

Person1 name “J. Gehrke”

...

Part II – Experimental Setting

Triples

Triple Table Approach
•  Systematic SPARQL-to-SQL rewriting to evaluate

SPARQL queries on top of the triples table

SPARQL-to-SQL
translation

(Triple Table)

Part II – Experimental Setting

SELECT ?author
WHERE {
 ?book type Book.
 ?book author ?author.
}

SELECT T2.object AS author
FROM Triples T1,
 Triples T2
WHERE
 T1.predicate=“type“ AND
 T1.object=“Book“ AND
 T2.predicate=“author“ AND
 T1.subject=T2.subject “Select all book authors”

Triple Table Approach

Part II – Experimental Setting

SELECT T2.object AS author
FROM Triples T1,
 Triples T2,
WHERE
 T1.predicate=“type“ AND
 T1.object=“Book“ AND
 T2.predicate=“author“ AND
 T1.subject=T2.subject

SPARQL-to-SQL
translation

(Triple Table)

SELECT ?author
WHERE {
 ?book type Book.
 ?book author ?author.
}

“Select all book authors”

•  Main disadvantage: resulting queries typically
contain self-joins over table Triples

Dictionary Encoding
subject predicate object

Book1 type Book

Book1 title “DBMS”

Book1 issued “2002”

Book1 author Person1

Book1 author Person2

Person1 name “J. Gehrke”

...

Dictionary
encoding

subject predicate object

1 2 3

1 4 5

1 6 7

1 8 9

1 8 10

9 11 12

...

ID val

1 Book1

2 type

3 Book

4 title

5 “DBMS”

6 issued

7 2002

8 author

9 Person1

10 Person2

11 name

12 J. Gehrke

... ...

+

Part II – Experimental Setting

Triples Triples Dictionary

Vertical Partitioning
•  Set up one table for each

distinct property (predicate)
in the data

•  Per table, store all tuples with
the respective predicate

subject object

Book1 Book

Inproc1 Inproceeding

subject object

Book1 Person1

Book1 Person2

Inproc1 Person1

Inproc1 Person2

Inproc1 Person3

type

author

subject object

Person1 “J. Gehrke”

Person2 “R. Ramakrishnan”

Person3 “V. Ganti”

name

...

Part II – Experimental Setting

Theoharis, Y., Christophides, V., Karvounarakis, G.: Benchmarking RDF Representations of RDF/S Stores. In ISWC‘05.
D.J. Abadi et al.: Scalable Semantic Web Data Management Using Vertical Partitioning. In VLDB’07.

Vertical Partitioning
•  Systematic SPARQL-to-SQL rewriting to evaluate

SPARQL queries on top of the predicate tables,
similar to the Triple Table approach

Part II – Experimental Setting

SELECT au.object AS author
FROM type ty,
 author au
WHERE
 ty.object=“Book“ AND
 ty.subject=au.subject

SPARQL-to-SQL
translation
(Vert. Part.)

SELECT ?author
WHERE {
 ?book type Book.
 ?book author ?author.
}

“Select all book authors”

subject object

Book1 Book

Book2 Book

Book3 Book

... ...

type
subject object

Book1 Person1

Book1 Person2

Book2 Person2

Book3 Person4

Book3 Person5

Book3 Person6

... ...

author

“Select all book authors”

Part II – Experimental Setting

SELECT au.object AS author
FROM type ty,
 author au
WHERE
 ty.object=“Book“ AND
 ty.subject=au.subject

Merge Joins (Vertical Partitioning)

D.J. Abadi et al.. Scalable Semantic Web Data Management Using Vertical Partitioning.
In VLDB’07.

Merge Joins (Vertical Partitioning)

subject object

Book1 Book

Book2 Book

Book3 Book

... ...

type
subject object

Book1 Person1

Book1 Person2

Book2 Person2

Book3 Person4

Book3 Person5

Book3 Person6

... ...

author

Part II – Experimental Setting

Efficient evaluation by merging subject columns
when data physically sorted by (subject,object)!

“Select all book authors”

SELECT au.object AS author
FROM type ty,
 author au
WHERE
 ty.object=“Book“ AND
 ty.subject=au.subject

D.J. Abadi et al.. Scalable Semantic Web Data Management Using Vertical Partitioning.
In VLDB’07.

Merge Joins (Triple Table)

subject predicate object

Book1 author Person1

Book1 author Person2

Book2 author Person2

Book3 author Person4

Book3 author Person5

Book3 author Person6

Book1 type Book

Book2 type Book

Book3 type Book

Finding: merge joins also possible in Triple
Table scenario when physically sorting
data by (predicate,subject,object)!

author
-block

type
-block

see also: L. Sidirourgos, R. Gocalves, M. Kerstin, N. Nes, and S. Manegold:
Column-store Support for RDF Data Management: not all swans are white. In VLDB’08.

Part II – Experimental Setting

Triples

...

.........

subject object

Book1 Book

Book2 Book

Book3 Book

... ...

type

subject object

Book1 Person1

Book1 Person2

Book2 Person2

Book3 Person4

Book3 Person5

Book3 Person6

... ...

author

Vertical Partitioning

Triple Table Approach

Experimental Setting
•  Scenario TR: Simple Triple Table approach

•  Data physically sorted by (predicate, subject, object)

•  Secondary index for remaining permutations of subj., pred., obj.

•  Combined with Dictionary Encoding

•  Scenario VP: Vertical Partitioning

•  Data physically sorted by (subject, object)

•  Secondary Index for (object, subject)

•  Combined with Dictionary Encoding

Part II – Experimental Setting

Experimental Setting
•  Scenario SP: Sesame native SPARQL engine

•  No RDF/SPARQL-to-SQL translation necessary

•  Provided Sesame all possible indices on RDF data

•  Scenario RS: Purely relational model of the scenario

•  Encoding designed using ERM DB modeling techniques

•  Using flat tables for publications, venues, persons, etc.

•  Queries: semantically equivalent SQL queries on top of the
relational model

Part II – Experimental Setting

Settings Summary
•  TR: Triple Table Approach

•  VP: Vertical Partitioning

•  RS: Purely Relational Schema

•  SP: SPARQL Engine Sesame

•  Intel2 DuoCore 2.13GHz CPU, 3GB DDR2 RAM, Ubuntu v7.10 gutsy

•  Generated Documents: 10k, 50k, 250k, 1M, 5M, and 25M triples

•  30min/query timeout, 2GB main memory limit, report on avg. over 3 runs

Sesame v2.0 coupled
with its native SAIL

MonetDB mserver
v5.5.0, using the new

algebra frontend

Part II – Experimental Setting

Experimental Results Q1
Return the year of publication of the
journal with the title ‘Journal 1 (1940)’.

Part III – Experimental Results

SELECT ?yr
WHERE {
 ?journal rdf:type bench:Journal.
 ?journal dc:title “Journal 1 (1940)“.
 ?journal dcterms:issued ?yr
}

SPARQL (original benchmark query) SELECT T3.object AS yr
FROM Triples T1, Triples T2, Triples T3
WHERE T1.predicate=“rdf:type“ AND
 T1.object=“bench:Journal“ AND 
 T2.predicate=“dc:title“ AND
 T2.object=“Journal 1 (1940)“ AND
 T3.predicate=“dcterns:issued“ AND
 T1.subject=T2.subject AND
 T1.subject=T3.subject

All translations and SP2Bench data generator available online at
http://dbis.informatik.uni-freiburg/index.php?project=SP2B

SELECT T3.object AS yr
FROM type ty, title ti, issued is
WHERE ty.object=“bench:Journal“ AND
 ti.object=“Journal 1 (1940)“ AND
 ty.subject=ti.subject AND
 ti.subject=is.subject

SQL/VP query without dictionary encoding
(marginally modified)

SQL/TR query without dictionary encoding
(marginally modified)

#Triples: S1=10k / S2=50k / S3=250k / S4=1M / S5=5M / S6=25M

Part III – Experimental Results

Experimental Results Q4
Select the names of all distinct pairs of article
authors that have published in the same journal.

Part III – Experimental Results

SELECT DISTINCT ?name1 ?name2
WHERE {
 ?article1 rdf:type bench:Article.
 ?article2 rdf:type bench:Article.
 ?article1 dc:creator ?author1.
 ?author1 foaf:name ?name1.
 ?article2 dc:creator ?author2.
 ?author2 foaf:name ?name2.
 ?article1 swrc:journal ?journal.
 ?article2 swrc:journal ?journal.
 FILTER (?name1<?name2)
}

SPARQL (original benchmark query)

SELECT DISTINCT
 T4.object AS name1, T6.object AS name2
FROM Triples T1, Triples T2, ..., Triples T8
WHERE
 T1.predicate=“rdf:type“ AND
 T1.object=“bench:Article“ AND 
 T2.predicate=“rdf:type“ AND
 T2.object=“bench:Article“ AND
 T3.predicate=“dc:creator“ AND
 T4.predicate=“foaf:name“ AND
 T5.predicate=“dc:creator“ AND
 T6.predicat=“foaf:name“ AND 
 T7.predicate=“swrc:journal“ AND
 T8.predicate=“swrc:journal“ AND
 T1.subject=T3.subject AND
 T1.subject=T7.subject AND
 T2.subject=T5.subject AND
 T2.subject=T8.subject AND
 T3.object=T4.subject AND
 T5.object=T6.subject AND
 T7.object=T8.object AND
 T4.object<T6.object

SQL/Triple Table without dictionary encoding
(marginally modified)

#Triples: S1=10k / S2=50k / S3=250k / S4=1M / S5=5M / S6=25M

Part III – Experimental Results

Experimental Results Q7
Return the titles of all papers that
have been cited at least once, but

not by any paper without citations.

Part III – Experimental Results

SELECT DISTINCT ?title
WHERE {
 ?class rdfs:subClassOf foaf:Document.
 ?doc rdf:type ?class.
 ?doc dc:title ?title.
 ?bag2 ?member2 ?doc.
 ?doc2 dcterms:references ?bag2
 OPTIONAL {
 ?class3 rdfs:subClassOf foaf:Document.
 ?doc3 rdf:type ?class3.
 ?doc3 dcterms:references ?bag3.
 ?bag3 ?member3 ?doc
 OPTIONAL {
 ?class4 rdfs:subClassOf foaf:Document.
 ?doc4 rdf:type ?class4.
 ?doc4 dcterms:references ?bag4.
 ?bag4 ?member4 ?doc3
 } FILTER (!bound(?doc4))
 } FILTER (!bound(?doc3))
}

SPARQL (original benchmark query)

Encoded as:
Return the titles of all cited

papers for which none of the
citing papers is not cited.

Experimental Results Q7
Return the titles of all papers that
have been cited at least once, but

not by any paper without citations.

Part III – Experimental Results

SELECT DISTINCT ?title
WHERE {
 ?class rdfs:subClassOf foaf:Document.
 ?doc rdf:type ?class.
 ?doc dc:title ?title.
 ?bag2 ?member2 ?doc.
 ?doc2 dcterms:references ?bag2
 OPTIONAL {
 ?class3 rdfs:subClassOf foaf:Document.
 ?doc3 rdf:type ?class3.
 ?doc3 dcterms:references ?bag3.
 ?bag3 ?member3 ?doc
 OPTIONAL {
 ?class4 rdfs:subClassOf foaf:Document.
 ?doc4 rdf:type ?class4.
 ?doc4 dcterms:references ?bag4.
 ?bag4 ?member4 ?doc3
 } FILTER (!bound(?doc4))
 } FILTER (!bound(?doc3))
}

SPARQL (original benchmark query)

Problem when translating into VP:
Unbound predicates require large unions

over all predicate tables; in contrast, query
can be easily translated into TR scheme.

Part III – Experimental Results

#Triples: S1=10k / S2=50k / S3=250k / S4=1M / S5=5M / S6=25M

Conclusion
•  Optimizers of RDBMs often not laid out for the specific challenges

that arise in the context of processing SW data

•  Vertical Partitioning not a general solution: Limitations for queries
with unbound predicates, non subject-subject joins, and in general
more complex queries

•  Triple Store with (predicate,subject,object) physical sort order often
competitive to VP, since data is arranged in the same way on disk

•  Typically gap of one order of magnitude compared to relational data
processing yet on small documents, increasing with document size

Part III – Experimental Results

New storage schemes and query evaluation approaches
necessary, to bring forward the evaluation of SPARQL queries!

A promising approach: Cathrin Weiss, Panagiotis Karras, Abraham Bernstein: Hexastore:
Sextuple Indexing for Semantic Web Data Management. In VLDB’08.

Thank you for your attention!

W3C: Resource Description Framework (RDF). http://www.w3.org/RDF/.
W3C: SPARQL Query Language. http://www.w3.org/TR/rdf- sparql- query/.
Bizer, C., Cyganiak, R.: D2R Server – Publishing the DBLP Bibliography Database. http://www4.wiwiss.fu- berlin.de/dblp/.
Alexaki, S., Christophides, V., Karvounarakis, G., Plexousakis, D.: On Storing Voluminous RDF Descriptions: The case of Web
Portal Catalogs. In WebDB. (2001)
Broekstra, J., Kampman, A., van Harmelen, F.: Sesame: A Generic Architecture for Storing and Querying RDF and RDF
Schema. In ISWC. (2002)
Bonstrom, V., Hinze, A., Schweppe, H.: Storing RDF as a Graph. In Web Congress. (2003)
Theoharis, Y., Christophides, V., Karvounarakis, G.: Benchmarking RDF Representations of RDF/S Stores. In ISWC. (2005)
Chong, E.I., Das, S., Eadon, G., Srinivasan, J.: An Efficient SQL-based RDF Querying Scheme. In VLDB. (2005)
Wilkinson, K.: Jena Property Table Implementation. In International Workshop on SSWKB. (2006)
Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.J.: Scalable Semantic Web Data Management Using Vertical
Partitioning. In VLDB. (2007)
Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.J.: Using the Barton libraries dataset as an RDF benchmark. TR, MIT.
Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP2Bench: A SPARQL Performance Benchmark. In ICDE‘09, to appear.
Ley, M.: DBLP Database. http://www.informatik.uni- trier.de/~ ley/db/.
openRDF.org: Home of Sesame. http://www.openrdf.org/documentation.jsp.
Sidirourgos, L., Goncalves, R., Kersten, M., Nes, N., Manegold, S.: Column-store Support for RDF Data Management: not all
swans are white. In VLDB. (2008)
Bizer, C., Schultz, A.: The Berlin SPARQL Benchmark. http://www4.wiwiss. fu- berlin.de/bizer/BerlinSPARQLBenchmark/.
Stonebraker, M, et al.: C-store: a Column-oriented DBMS. In VLDB. (2005) 553–564
CWI Amsterdam: MonetDB. http://monetdb.cwi.nl/.
Chebotko, A., Lu, S., Yamil, H.M., Fotouhi, F.: Semantics Preserving SPARQL- to-SQL Query Translation for Optional
Graph Patterns. Technical report, TR- DB-052006-CLJF. (2006).
Cyganiac, R.: A Relational Algebra for SPARQL. TR, HP Bristol.
Harris, S.: SPARQL Query Processing with Conventional Relational Database Systems. In SSWS. (2005)

Additional Resources
•  Benchmark Requirements

•  Data generator implementation

•  Query characteristics summary

•  Distribution of outgoing citations

•  Triple table approach with physical
 (subject, predicate, object) sort order

•  Purely relational scheme

Benchmark Requirements
•  Relevance: test typical operations within the

benchmark domain

•  Scalability: support tests on different data sizes

•  Portability: possible execution on different platforms,
applicability to different systems

•  Understandability: since otherwise, it will not be
accepted in practice

Part I – The SP2Bench SPARQL Performance Benchmark

J. Gray: The Benchmark Handbook for Database and Transaction Systems.
Morgan Kaufmann, 1993.

Data Generator Implementation
•  Technical challenges to data generator

•  Efficient generation of large data sets (scales
linearly to document size, constant memory)

•  Deterministic (random functions with fixed seed)

•  Incremental data generation

•  Platform independent

•  Physical Database Size

Query Characteristics
Category Construct Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

Operators And

Union

Filter

Optional

Solution
Modifiers

Distinct

Limit

Offset

Order by

Data Access Blank

Literal

URI

Relevance and Understandability
•  Data with real-world characteristics

Probability for a paper
having x citations

real DBLP
vs.

approx. in SP2Bench

Merge Joins (Triple Table)
subject predicate object

Book1 author Person1

Book1 author Person2

Book1 type Book

Book2 author Person2

Book2 type Book

Book3 author Person4

Book3 author Person5

Book3 author Person6

Book3 type Book

Triples

No efficient join evaluation possible
when data is physically sorted by
(subject,predicate,object)!

...

authors
physically

distributed

SELECT T2.object AS author
FROM Triples T1,
 Triples T2,
WHERE
 T1.predicate=“type“ AND
 T1.object=“Book“ AND
 T2.predicate=“author“ AND
 T1.subject=T2.subject

“Select all book authors”

...

...

...

...

The Relational Scheme RS

Foreign Key

Generalization

Physical Database Size�
(incl. Indizes)

#triples in
document

SP TR VP RS

10k 3 MB 3 MB 6 MB 4 MB

50k 14 MB 5 MB 8 MB 5 MB

250k 69 MB 18 MB 20 MB 13 MB

1M 277 MB 63 MB 58 MB 42 MB

5M 1376 MB 404 MB 271 MB 195 MB

25M 6928 MB 2395 MB 1168 MB 913 MB

Part III – Experimental Results

