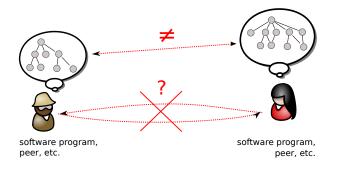
Comparison between ontology distances (preliminary results)

Jérôme David, Jérôme Euzenat

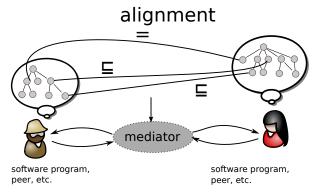


Context

A distributed and heterogenous environment: the semantic Web

Several ontologies on the same domain

Problem: how to facilitate the communication between programs using different ontologies ?



Context

A distributed and heterogenous environment: the semantic Web

Several ontologies on the same domain

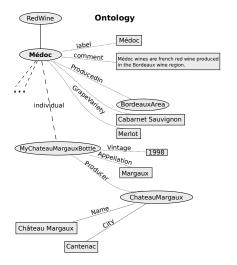
Problem: how to facilitate the communication between programs using different ontologies ?

Context

How to deal with many ontologies at Web scale ? A solution: Distances between ontologies

- In peer-to-peer systems: find a peer using a close ontology
- In ontology engineering: find related ontologies for facilitating ontologies reuse
- etc.

Objectives:


- Review some distances between ontologies
 - distances issued from ontology matching
- Make a preliminary evaluation of these measures
 - accuracy vs. speed

Various kinds of ontology distances

Two kinds of ontology distances evaluated:

- Vectorial distances: ontologies are viewed as bags of terms
 - 1. which weight scheme to use ?
 - 2. which vector distance to use ?
- Entity-based distances: the distance between ontologies is function of the distance between their entities
 - 1. entity distances: structural or/and lexical ?
 - 2. aggregating entity distance values: which collection distance to use ?

Vectorial ontology distances

Ontology vector

wine 3 2 red médoc 2 french 1 bordeaux 1 cabarnet 1 sauvignon 1 merlot margaux chateau cantenac 1998 grape

appelation

producer

Possible weights

Boolean

Frequency

TF.IDF

Vector measures

Cosine Jaccard (Tanimoto index)

Entity distances

Label-based distance:

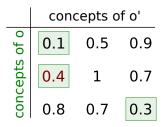
- String-distance between entity annotations : Jaro-Winkler
- Minimum Weight pairing + arithmetic mean

Structural distances:

- OLA similarity
 - Structural iterative similarity for OWL ontologies
- Triple-based iterative similarity
 - Structural iterative similarity for RDF graphs

Problem: How to aggregate entity measures values ?

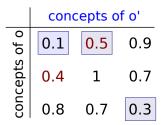
Goal: compute ontology measure from concept measure values. Collection measures used


 Average linkage : the arithmetic mean of concept measure values.

	concepts of o'		
of o	0.1	0.5	0.9
concepts	0.4	1	0.7
cone	0.8	0.7	0.3
mean = 0.5			

Goal: compute ontology measure from concept measure values. Collection measures used

- Average linkage : the arithmetic mean of concept measure values.
- ► Hausdorff :


 $\Delta_{\textit{Hausdorff}}(o, o') = \max(\max_{e \in o} \min_{e' \in o'} \delta_K(e, e'), \max_{e' \in o'} \min_{e \in o} \delta_K(e, e'))$

Goal: compute ontology measure from concept measure values. Collection measures used

- Average linkage : the arithmetic mean of concept measure values.
- ► Hausdorff :

 $\Delta_{\textit{Hausdorff}}(o, o') = \max(\max_{e \in o} \min_{e' \in o'} \delta_K(e, e'), \max_{e' \in o'} \min_{e \in o} \delta_K(e, e'))$

Goal: compute ontology measure from concept measure values. Collection measures used

- Average linkage : the arithmetic mean of concept measure values.
- ► Hausdorff :

 $\Delta_{Hausdorff}(o, o') = \max(\max_{e \in o} \min_{e' \in o'} \delta_{\mathcal{K}}(e, e'), \max_{e' \in o'} \min_{e \in o} \delta_{\mathcal{K}}(e, e'))$

	concepts of o'		
pts of o	0.1	0.5	0.9
() I	0.4	1	0.7
conce	0.8	0.7	0.3

Goal: compute ontology measure from concept measure values. Collection measures used

- Average linkage : the arithmetic mean of concept measure values.
- ► Hausdorff :

 $\Delta_{\textit{Hausdorff}}(o, o') = \max(\max_{e \in o} \min_{e' \in o'} \delta_{\mathcal{K}}(e, e'), \max_{e' \in o'} \min_{e \in o} \delta_{\mathcal{K}}(e, e'))$

Minimum Weight Maximum Graph Matching distance:

	concepts of o'		
of o	0.1	0.5	0.9
concepts of o	0.4	1	0.7
cone	0.8	0.7	0.3
	mean = 0.4		

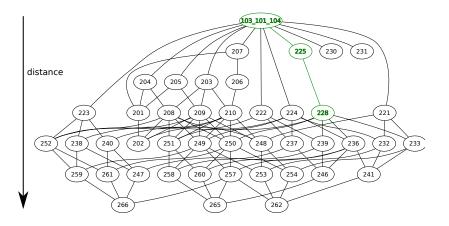
Selected Measures

12 measures evaluated:

- 3 vectorial measures:
 - Jaccard: the most basic measure (proportion of common terms)
 - Cosine + TF weights
 - Cosine + TF·IDF weights
- 3 entity measures:
 - EntityLexicalMeasure
 - TripleBasedEntitySim
 - OLAEntitySim
 - \rightarrow 9 entity based measures

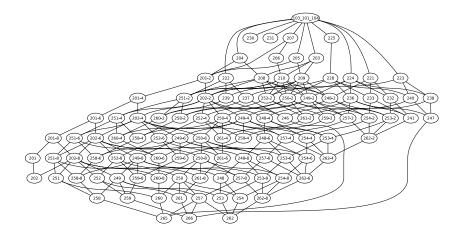
combined with 3 collections measures:

- AverageLinkage
- Hausdorff
- MWMGM


Benchmark suite

OAEI benchmark test set:

- 1 reference ontology 101 and altered ontologies
- 6 kinds of alterations:
 - Name: suppressed, randomized, synonyms, convention, other language
 - Comment: suppressed, other language
 - ► Specialization hierarchy: suppressed, expanded, flattened
 - Instances: suppressed
 - Properties: suppressed, discarded restrictions
 - Classes: split, flattened
- Order between alterations
 - Example on name: {suppressed, randomized} < { synonym, convention, other language }
 - ontology with synonym names is closer to the reference one than ontology with no names


Benchmark suite

Induced proximity order: 101 is closer to 225 than 228

Benchmark suite

Induced proximity order (with partial alterations):

Tests

We performed 3 different tests:

- Order comparison on benchmark test set
 - check if the similarity orders are compatible with the order induced by alterations
 - For each o, o' check if $101 < o < o' \Rightarrow \delta(101, o) < \delta(101, o')$
 - Test set is biased towards 1-1 matching: some measure favored

Tests

We performed 3 different tests:

- Order comparison on benchmark test set
 - check if the similarity orders are compatible with the order induced by alterations
 - For each o, o' check if $101 < o < o' \Rightarrow \delta(101, o) < \delta(101, o')$
 - Test set is biased towards 1-1 matching: some measure favored
- Different cardinality matching
 - compare with related but different ontologies
 - compare with unrelated ontologies

Tests

We performed 3 different tests:

- Order comparison on benchmark test set
 - check if the similarity orders are compatible with the order induced by alterations
 - For each o, o' check if $101 < o < o' \Rightarrow \delta(101, o) < \delta(101, o')$
 - Test set is biased towards 1-1 matching: some measure favored
- Different cardinality matching
 - compare with related but different ontologies
 - compare with unrelated ontologies
- Time consumption test
 - compare the time consumption of evaluated measures

Proportion of o, o' satisfying the induced order:

Measure	Tests Passed (ratio)		
Weasure	Original	Enhanced	
MWMGM (EntityLexicalMeasure)	0.53	0.72	
Hausdorff (EntityLexicalMeasure)	NaN	NaN	
AverageLinkage (EntityLexicalMeasure)	0.44	0.31	
MWMGM (OLAEntitySim)	0.75	0.78	
Hausdorff (OLAEntitySim)	0.75	0.65	
AverageLinkage (OLAEntitySim)	0.79	0.74	
MWMGM (TripleBasedEntitySim)	0.86	0.92	
Hausdorff (TripleBasedEntitySim)	0.86	0.89	
AverageLinkage (TripleBasedEntitySim)	0.82	0.91	
CosineVM (TF)	0.82	0.92	
CosineVM (TFIDF)	0.57	0.81	
JaccardVM (TF)	0.71	0.87	

 best entity measure : TripleBasedEntitySim

Proportion of o, o' satisfying the induced order:

Measure	Tests Passed (ratio)		
Weasure	Original	Enhanced	
MWMGM (EntityLexicalMeasure)	0.53	0.72	
Hausdorff (EntityLexicalMeasure)	NaN	NaN	
AverageLinkage (EntityLexicalMeasure)	0.44	0.31	
MWMGM (OLAEntitySim)	0.75	0.78	
Hausdorff (OLAEntitySim)	0.75	0.65	
AverageLinkage (OLAEntitySim)	0.79	0.74	
MWMGM (TripleBasedEntitySim)	0.86	0.92	
Hausdorff (TripleBasedEntitySim)	0.86	0.89	
AverageLinkage (TripleBasedEntitySim)	0.82	0.91	
CosineVM (TF)	0.82	0.92	
CosineVM (TFIDF)	0.57	0.81	
JaccardVM (TF)	0.71	0.87	

 best entity measure : TripleBasedEntitySim

 best collection measure : MWMGM

Proportion of o, o' satisfying the induced order:

Measure	Tests Passed (ratio)		
iviedsure	Original	Enhanced	
MWMGM (EntityLexicalMeasure)	0.53	0.72	
Hausdorff (EntityLexicalMeasure)	NaN	NaN	
AverageLinkage (EntityLexicalMeasure)	0.44	0.31	
MWMGM (OLAEntitySim)	0.75	0.78	
Hausdorff (OLAEntitySim)	0.75	0.65	
AverageLinkage (OLAEntitySim)	0.79	0.74	
MWMGM (TripleBasedEntitySim)	0.86	0.92	
Hausdorff (TripleBasedEntitySim)	0.86	0.89	
AverageLinkage (TripleBasedEntitySim)	0.82	0.91	
CosineVM (TF)	0.82	0.92	
CosineVM (TFIDF)	0.57	0.81	
JaccardVM (TF)	0.71	0.87	

- best entity measure : TripleBasedEntitySim
- best collection measure : MWMGM
- best vectorial measure : Cosine with TF weights

Proportion of o, o' satisfying the induced order:

Measure	Tests Passed (ratio)		
iviedsure	Original	Enhanced	
MWMGM (EntityLexicalMeasure)	0.53	0.72	
Hausdorff (EntityLexicalMeasure)	NaN	NaN	
AverageLinkage (EntityLexicalMeasure)	0.44	0.31	
MWMGM (OLAEntitySim)	0.75	0.78	
Hausdorff (OLAEntitySim)	0.75	0.65	
AverageLinkage (OLAEntitySim)	0.79	0.74	
MWMGM (TripleBasedEntitySim)	0.86	0.92	
Hausdorff (TripleBasedEntitySim)	0.86	0.89	
AverageLinkage (TripleBasedEntitySim)	0.82	0.91	
CosineVM (TF)	0.82	0.92	
CosineVM (TFIDF)	0.57	0.81	
JaccardVM (TF)	0.71	0.87	

- best entity measure : TripleBasedEntitySim
- best collection measure : MWMGM
- best vectorial measure : Cosine with TF weights

- Best results: TripleBasedEntitySim with MWMGM
- Cosine with TF weights: basic measure but works well
- Hausdorff works only with TripleBasedEntitySim
- Is MWMGM favored by the 1-1 nature of this test ?

Different cardinality matching

Objective: Ensure that MWMGM is still the best measure when we use different cardinality ontologies Test set:

- ► A reference ontology: 101
- Highly altered ontologies: 2xx
- Different but similar ontologies: 3xx
- Irrelevant ontologies: conference test set (could share some vocabulary with benchmark ontologies)

Expected results:

```
\delta(101, 2xx) < \delta(101, 3xx) < \delta(101, conference)
```

Different cardinality matching

Results: MWMGM still performs best, vectorial measures fail when ontologies are lexically altered

Main misorderings:

- MWMGM
 - only one altered (250) with similar (3xx) and conference ontologies
 - some similar (3xx) with conference ontologies
- Hausdorff :
 - with TripleBasedEntitySim: only 250 with similar (3xx) and a conference ontology
 - with OLAEntitySim: 228, 248, 250, 251, 252 with 304 and conference ontologies
 - with LexicalEntitySim: does not work
- AverageLinkage
 - highly altered (2xx) and similar (3xx) ontologies
- Vectorial measures
 - many altered (248, 250, 251, 252) ontologies with similar (3xx) ontologies

Time consumption

Are measures useable in real-time applications ?

Vectorial measures are more time efficient

Measure	Total time	Average time
	(s)	per similarity value (s)
MWMGM(EntityLexicalMeasure)	558	0.46
MWMGM (OLAEntitySim)	39 074	31.9
MWMGM (TripleBasedEntitySim)	7 950	6.49
Hausdorff (EntityLexicalMeasure)	451	0.37
Hausdorff (OLAEntitySim)	38 912	31.76
Hausdorff (TripleBasedEntitySim)	7 410	6.05
AverageLinkage (EntityLexicalMeasure)	444	0.36
AverageLinkage (OLAEntitySim)	38 995	31.83
AverageLinkage (TripleBasedEntitySim)	7 671	6.26
CosineVM (TF)	101	0.08
CosineVM (TFIDF)	102	0.08
JaccardVM (TF)	101	0.08

Time consumption on benchmark test:

Time consumption

Are measures useable in real-time applications ?

- Vectorial measures are more time efficient
- Not significant differences between MWMGM (N³), Hausdorff and AverageLinkage(N²)

Measure	Total time	Average time
	(s)	per similarity value (s)
MWMGM(EntityLexicalMeasure)	558	0.46
MWMGM (OLAEntitySim)	39 074	31.9
MWMGM (TripleBasedEntitySim)	7 950	6.49
Hausdorff (EntityLexicalMeasure)	451	0.37
Hausdorff (OLAEntitySim)	38 912	31.76
Hausdorff (TripleBasedEntitySim)	7 410	6.05
AverageLinkage (EntityLexicalMeasure)	444	0.36
AverageLinkage (OLAEntitySim)	38 995	31.83
AverageLinkage (TripleBasedEntitySim)	7 671	6.26
CosineVM (TF)	101	0.08
CosineVM (TFIDF)	102	0.08
JaccardVM (TF)	101	0.08

Time consumption on benchmark test:

Time consumption

Are measures useable in real-time applications ?

- Vectorial measures are more time efficient
- Not significant differences between MWMGM (N³), Hausdorff and AverageLinkage(N²)
- Structural measures are not really useable in real-time applications

Measure	Average time	
	(s)	per similarity value (s)
MWMGM(EntityLexicalMeasure)	558	0.46
MWMGM (OLAEntitySim)	39 074	31.9
MWMGM (TripleBasedEntitySim)	7 950	6.49
Hausdorff (EntityLexicalMeasure)	451	0.37
Hausdorff (OLAEntitySim)	38 912	31.76
Hausdorff (TripleBasedEntitySim)	7 410	6.05
AverageLinkage (EntityLexicalMeasure)	444	0.36
AverageLinkage (OLAEntitySim)	38 995	31.83
AverageLinkage (TripleBasedEntitySim)	7 671	6.26
CosineVM (TF)	101	0.08
CosineVM (TFIDF)	102	0.08
JaccardVM (TF)	101	0.08

Time consumption on benchmark test:

Conclusion

- Why use complex measures when basic measures performs well ?
 - for discriminating highly related ontologies
- More precise test set is needed
- Characterize confidence intervals
 - Is there a threshold from which returned values are always correct ?
- Other ontology distances measures: alignment based