Non-Local Evidence for Expert Finding

Krisztian Balog and Maarten de Rijke

ACM 17th Conference on Information and Knowledge Management (CIKM 2008) Napa Valley, California Oct 26 - 30, 2008

Non-Local Evidence for <u>Expert Finding</u>

- Find the right person with the appropriate skills and knowledge
- Given a topic, rank expert candidates

Non-Local Evidence for Expert Finding

- Existing approaches to expert finding
 - Compute associations between candidates and topics, based on their co-occurrance in
 - documents
 - text-snippets

Non-Local Evidence for Expert Finding

- Our aim
 - Identify and integrate non-local sources of evidence into existing expert finding models
 - Evidence that is not available from an individual page or text snippet

Outline

- Retrieval model
- Experimental setting
- Identifying and integrating non-local evidence
- Results
- Conclusions

Retrieval Model

- The problem of experts finding is stated as:
 - What is the probability of a candidate *ca* being an expert given the query topic *q*?

$$p(ca|q) = \frac{p(q|ca) \cdot p(ca)}{p(q)}$$

$$p(ca|q) \propto p(q|ca) \cdot p(ca)$$

How likely the candidate would produce the query

The *a priori* belief that the candidate is an expert

Retrieval Model (2)

- How likely the candidate would produce the query? p(q|ca)
- Generative language modeling approach
 - Both the candidate and the query are represented as a multinomial probability distribution over terms

Candidate model

 $p(t|\theta_{ca}) = (1 - \lambda_{ca}) \cdot p(t|ca) + \lambda_{ca} \cdot p(t)$

Document-candidate associations: Boolean model

$$p(d|ca) = \begin{cases} 1, & n(ca,d) > 0, \\ 0, & \text{otherwise.} \end{cases}$$

The number of times *ca* is recognized in document *d*

Candidate model

 $p(t|\theta_{ca}) = (1 - \lambda_{ca}) \cdot p(t|ca) + \lambda_{ca} \cdot p(t)$

Document-based model: Model 1

Proximity-based model: Model 1B

<text><text><text><text><text><text><text><text><text><text><text><text><text>

We have have a set of the set of

Query Model

Baseline query model (BL)

Probability mass assigned uniformly across query terms

Example query: cane toads

Outline

• Retrieval model

- Experimental setting
- Identifying and integrating non-local evidence
- Results
- Conclusions

Experimental Setting

- TREC 2007 Enterprise Track
 - Document collection: web crawl of CSIRO (~370.000 docs, 4.2 GB)
 - 50 topics
 - Candidate identification
 - No canonical list is given in advance
 - E-mail addresses follow <u>Firstname.Lastname@csiro.au</u> format
 - Occurrences are replaced with a unique id

Setting the Baseline

- Boolean document-candidate associations
 - All candidates mentioned in the document are equally important, and vice versa
- Baseline query
 - All query terms are equally important
- Uniform priors
 - All candidates are equally likely to be experts

Non-Local Evidence

- Document-candidate associations
- Query model
- Candidate priors

Document-candidate Associations

- Importance of a candidate given a document p(d|ca)
 - So far: all candidates are equally important
 - Estimate the strength of the association based on
 - How many times the candidate is mentioned in the document
 - How many other documents the candidate is related to

Document-candidate Associations (2)

- Lean document representation
 - Document contains only candidate mentions
- Use a term weighting scheme that combines the candidate's (local) frequency in the document and its global frequency

 $p(d|ca) \propto TF.IDF(d,ca)$

Document-candidate Associations (3)

	ca_1	• • •	i	•••	ca_n	
d_1						-
•••						
d_i -						
J						
•••						
d_m						

- Weight of the candidate in the document is computed in two ways
 - **I)** Number of occurrences n(ca, d) **TFIDF**
 - 2) Semantic relatedness

$$n'(ca,d) = \begin{cases} \operatorname{KL}(\theta_{ca} || \theta_d), & n(ca,d) > 0 \\ 0, & \text{otherwise.} \end{cases}$$

Results

Query Models

- TREC 2007 Enterprise track simulates a type of click-based system
- A few examples of key documents are provided with the topic description
- [Balog et. al., 2008] propose an effective method for constructing a query model by sampling terms from example documents

K. Balog, W. Weerkamp and M. de Rijke. A Few Examples Go A Long Way: Constructing Query Models from Elaborate Query Formulations. In: *SIGIR 2008*.

Example Topic

<top>

```
<num>CE-039</num>
```

```
<query>cane toads</query>
```

<narr>

Cane toads were introduced into Australia in a failed bid to control Australian native beetles. [...] Resources describing cane toads, invasive species, pest management, biological control would all be relevant to the topic.

</narr>

<page>CSIR0141-14983789</page>
<page>CSIR0139-09015831</page>
<page>CSIR0134-11651748</page>
</top>

Example Query Model

Candidate Priors

Candidate priors

- Encodes organizational knowledge
- Extracted names and positions from contact boxes
- Filtering out science communicators (SC) based on position information
 - communication officer/manager/advisor
 - manager public communications

$$p(ca) = \begin{cases} 1, & ca \notin SC, \\ 0, & ca \in SC. \end{cases}$$

How good is it?

Method	Run type	MAP				
TREC 2007 best	automatic	0.4632				
TREC 2007 best	feedback	0.3660				
TREC 2007 best	manual	0.4787				
Voting model [1]	automatic	0.3519				
Relevance prop. [2]	automatic	0.4319				
Baselines in this paper						
Document-based model	automatic	0.3801				
Proximity-based model	automatic	0.4633				

- [1] C. Macdonald, D. Hannah, and I. Ounis. High quality expertise evidence for expert search. In *ECIR 2008*.
- [2] P. Serdyukov, H. Rode, and D. Hiemstra. Modeling relevance propagation for the expert search task. In *TREC 2007*.

How good is it? (2)

Method	Run type	MAP			
Document-based model					
Baseline	automatic	0.3801			
Document-cand. assoc.	automatic	0.4541			
Query model	feedback	0.5044			
Candidate priors	feedback	0.5506			
Proximity-based model					
Baseline	automatic	0.4633			
Document-cand. assoc.	automatic	0.4735			
Query model	feedback	0.5465			
Candidate priors	feedback	0.5747			

Conclusions

- Identified a number of non-local sources of evidence for expert finding
- Complemented existing document and proximity-based approaches to incorporate non-local evidence
- Showed significant improvements over a very competitive baseline
- Outperformed existing state-of-the-art

Further Work

- Non-local evidence within documents
 - Recognize and exploit internal document structure

Future Work (2)

About CSIRO | Doing Business | Media | Events | Explore & Educate | Publications | Careers | CSIRO Shop | Contact Us

Home - Showcases - Watch & Listen

Video

(8:00)

interview

C Search this site

Show cases 🖌 Flag ships 🖌

Divisions 🖌

Astronomy & Space⊿ Low bandwidth Streaming video

Energy ∡

Broadband Streaming video

Download Windows Media Player 🕑 En vironment ⊿

Manufacturing # guinea pig to test Dr Fenech's theories.

Farming & Food ∡ View Transcript 22 KB

genomes.

Health & Wellbeing 4

Communication Technology

Mining & Minerals A

Infrastructure

Materials 4

disease that can be diagnosed and treated.

Information & / Dr Michael Fenech says we should consider damage to the genome as a fundamental

Transport & d CSIRO has completed negotiations with a private company to make the genome

DNA Doctor: Catalyst, ABC

In this video CSIRO's Dr Michael Fenech says

that damage to the genome is a fundamental

disease that can be diagnosed and treated.

The cell on the left is normal but the one on the right shows signs of genetic damage. The damaged DNA appears as six micronuclei in the cell.

PRIMARY CONTACT

Dr Michael Fenech Theme Director - Food and Nutrition Food Science Australia Phone: 61 8 8303 8880 Alt Phone: 61 8 8303 8800 Fax: 61 8 8303 8899 Email: Michael.Fenech@csiro.au

EDITOR'S CHOICE

- ▲ Dr Michael Fenech: keeping our genes healthy
- The genome health and nutrigenomics project
- ▲ Welcome to the world of personalised nutrition (Media release 9 Dec 05)

Subscription Information

that may assist in prevention of DNA damage. The launch of the Reach 100 clinic in early July 2007, highlighted the role of

In this video ABC Reporter for the television program Catalyst, Mr Paul Willis, acts a

The video also features an interview with Professor Bruce Armstrong at the University

of Sydney, Sydney, NSW, Australia, about the likelihood of being able to repair our

health analysis test described in this Catalyst interview available to the general public on a commercial basis together with advice on dietary patterns and/or supplements

preventative health and dietary methods of reducing cancer risk factors.

Learn more about CSIRO's work Preventing diseases and detecting them sooner.

Non-Local Evidence for Expert Finding

K.Balog@uva.nl http://www.science.uva.nl/~kbalog