Problem	Theoretical measure	Evaluation	Conclusion

Semantic relatedness measure using object properties in an ontology

Laurent Mazuel, Nicolas Sabouret

Laboratoire Informatique de Paris 6 (LIP6), France {laurent.mazuel, nicolas.sabouret}@lip6.fr

7th International Semantic Web Conference, October 30th 2008

Problem	Theoretical measure	Evaluation	Conclusion
00		000	00
Outline			

2 Theoretical measure

æ

Problem	Theoretical measure	Evaluation	Conclusion
Outline			

Theoretical measure

3 Evaluation

4 Conclusion

æ

∃ ► < ∃ ►</p>

Problem	Theoretical measure	Evaluation	Conclusion
●0	0000	000	00
Semantic meas	sure definition		

Computes a score of semantic similarity/relatedness/distance between two concepts defined in the same knowledge representation

Problem	Theoretical measure	Evaluation	Conclusion
●○	0000	000	00
Semantic mea	sure definition		

Computes a score of semantic similarity/relatedness/distance between two concepts defined in the same knowledge representation

- Similarity: only use attributes in common (*e.g.* moto-car)
- 2 Relatedness: use non-subsomption relation (e.g. gasoline-car)

Problem	Theoretical measure	Evaluation	Conclusion
●○	0000	000	00
Semantic m	easure definition		

Computes a score of semantic similarity/relatedness/distance between two concepts defined in the same knowledge representation

- Similarity: only use attributes in common (*e.g.* moto-car)
- 2 Relatedness: use non-subsomption relation (e.g. gasoline-car)

In litterature

- Similarity: well-studied on all KR
- Relatedness: studied only in Gloss-based [Strube06] or Google [Cilibrasi06]
- Human/machine interaction system cannot use Gloss-based or Google [Eliasson07]

Problem	Theoretical measure	Evaluation	Conclusion
●0	0000	000	00
Semantic n	neasure definition		

Computes a score of semantic similarity/relatedness/distance between two concepts defined in the same knowledge representation

- Similarity: only use attributes in common (*e.g.* moto-car)
- 2 Relatedness: use non-subsomption relation (e.g. gasoline-car)

In litterature

- Similarity: well-studied on all KR
- Relatedness: studied only in Gloss-based [Strube06] or Google [Cilibrasi06]
- Human/machine interaction system cannot use Gloss-based or Google [Eliasson07]

Need for efficient relatedness on graph-based KR

Problem	Theoretical measure	Evaluation	Conclusion
6•			

Semantic measure objective

Hypothesis

- Graph-based knowledge representation
 - (e.g. semantic networks, W3C SKOS):
 - Based upon hierarchical structure
 - With heterogeneous relations (part-of, etc.)
- 2 Extension of previous work on semantic similarity measure

Problem	Theoretical measure	Evaluation	Conclusion
Outline			

2 Theoretical measure

æ

Problem	Theoretical measure	Evaluation	Conclusion
	0000		
Semantica	Illy correct path		

Semantically correct path

- Introduced by [Hirst&St-Onge98]
- Notion still used: [Aleksovski06], [Hollink06]
- Using all relations, must filter the set of all possible graph paths ⇒set of patterns to recognize a semantically correct path, based on the combination of relation type in a path

Problem	Theoretical measure	Evaluation	Conclusion
	0000		
Semanticall	y correct path		

Semantically correct path

- Introduced by [Hirst&St-Onge98]
- Notion still used: [Aleksovski06], [Hollink06]
- Using all relations, must filter the set of all possible graph paths ⇒set of patterns to recognize a semantically correct path, based on the combination of relation type in a path

Examples

- [*is-a*]⁺ [*part-of*]⁺ [*includes*]⁺: correct pattern
- [*is-a*]⁺ [*part-of*]⁺ [*includes*]⁺ [*part-of*]⁺: incorrect pattern

Problem	Theoretical measure	Evaluation	Conclusion
	0000		
Semanticall	y correct path		

Semantically correct path

- Introduced by [Hirst&St-Onge98]
- Notion still used: [Aleksovski06], [Hollink06]
- Using all relations, must filter the set of all possible graph paths ⇒set of patterns to recognize a semantically correct path, based on the combination of relation type in a path

Examples

- [*is-a*]⁺ [*part-of*]⁺ [*includes*]⁺: correct pattern
- [*is-a*]⁺ [*part-of*]⁺ [*includes*]⁺ [*part-of*]⁺: incorrect pattern

We will only consider paths which are semantically correct

7 / 17

L. Mazuel, N. Sabouret (LIP6)

Problem	Theoretical measure	Evaluation	Conclusion
	0000		
Single-relation	path: hierarchical pat	h	

Single-relation path

• Path with only one type of relation

L. Mazuel, N. Sabouret (LIP6)

Problem	Theoretical measure	Evaluation	Conclusion
	0000		
Single relation	nath: hiorarchical nat	h	

merarentear

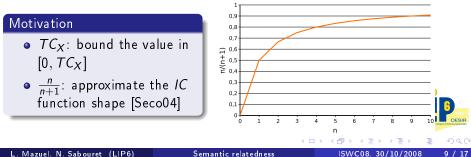
Single-relation path

• Path with only one type of relation

Hierarchical single-relation path

- Information theoretic approach introduced by [Resnik95]
- Each node has a weight:
 ⇒ the Information Content function: IC(x) [Resnik95, Seco04]
- Converted to edge weight by [Jiang&Conrath97]:

$$W(path_{X \in \{isa, include\}}(x, y)) = |IC(x) - IC(y)|$$



Problem	Theoretical measure	Evaluation	Conclusion
	0000		
Single-relation	path: non-hierarchica	l path	

Non-hierarchical path

$$W(extsf{path}_X(x,y)) = extsf{T} C_X imes \left(rac{| extsf{path}_X(c_1,c_2)|}{| extsf{path}_X(c_1,c_2)|+1}
ight)$$

• With TC_X the weight of an infinite-length path of type X

L. Mazuel, N. Sabouret (LIP6)

Problem	Theoretical measure	Evaluation	Conclusion
	0000		
Final dista	nce		

Weight of a mixed-path

• The function T(path(x, y)) computes the minimal set of single-relation paths

$$W(path(x,y)) = \sum_{p \in T(path(x,y))} W(p)$$

10 / 17

э

L. Mazuel, N. Sabouret (LIP6)

∃ → (∃ →

Problem	Theoretical measure	Evaluation	Conclusion
	0000		
Final dista	nce		

Weight of a mixed-path

• The function T(path(x, y)) computes the minimal set of single-relation paths

$$W(path(x,y)) = \sum_{p \in T(path(x,y))} W(p)$$

Final distance

• Function HSO(p) is true iff p is a valid path w.r.t. HSO rules.

$$dist(c_1, c_2) = \min_{\{p \in \pi(c_1, c_2) | HSO(p) = true\}} W(p)$$

Problem	Theoretical measure	Evaluation	Conclusion
00	0000	000	00
Outline			

2 Theoretical measure

4 Conclusion

11 / 17

æ

▶ ∢ ≣

Problem	Theoretical measure	Evaluation	Conclusion
00	0000	●00	00
Evaluation			

Protocol

- KR: WordNet 3.0, IC [Seco04], using part-of only
- Test: [Miller&Charles91], [Finkelstein01] for WordSimilarity-353
 - M&C: 30 couples, test *similarity* (e.g. magician-wizard)
 - WS-353: 353 couples, test relatedness (e.g. computer-keyboard)

12 / 17

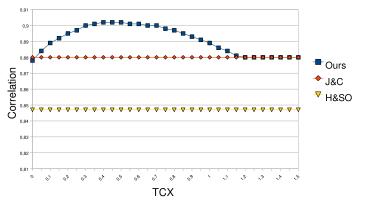
∃ ► < ∃ ►

Problem	Theoretical measure	Evaluation	Conclusion
00	0000	●00	00
Evaluation			

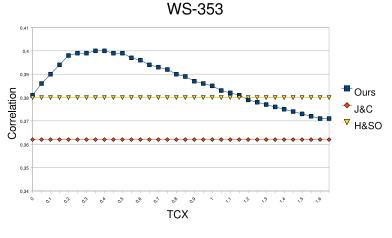
Protocol

- KR: WordNet 3.0, IC [Seco04], using part-of only
- Test: [Miller&Charles91], [Finkelstein01] for WordSimilarity-353
 - M&C: 30 couples, test *similarity* (e.g. magician-wizard)
 - WS-353: 353 couples, test relatedness (e.g. computer-keyboard)

	Correlation	
Measures	M&C	WS-353
Rada	0.638	0.249
Resnik	0.804	0.375
Lin	0.836	0.377
Jiang & Conrath	0.880	0.362
Hirst & St-Onge	0.847	0.380
Our measure, $TC_{part-of} = 0.4$	0.902	0.400


12 / 17

글 🕨 🖌 글


Image: Image:

Problem	Theoretical measure	Evaluation	Conclusion
00	0000	⊙●○	00
TC_X study with	th [M&C91]		

< A

DESIF

Problem	Theoretical measure	Evaluation	Conclusion
00	0000	000	00
Outline			

15 / 17

æ

L. Mazuel, N. Sabouret (LIP6)

- A 🖓

Problem	Theoretical measure	Evaluation	Conclusion
00	0000	000	●○
Conclusion &	future work		

Conclusion

- A new relatedness measure on graph-based knowledge model
 - With information theoretic approach
 - With semantic path patterns
 - With a new formula for non-hierarchical path
- Evaluated on classical benchmark & gives good result

Problem	Theoretical measure	Evaluation	Conclusion
00	0000	000	●○
Conclusion &	future work		

Conclusion

- A new relatedness measure on graph-based knowledge model
 - With information theoretic approach
 - With semantic path patterns
 - With a new formula for non-hierarchical path
- Evaluated on classical benchmark & gives good result

Future work

- Test with:
 - Others KR model (e.g. SNOMED v3.5 Fr, 105.000 concepts)
 - Integrated in a human/machine interaction system
- Extension to OWL Lite?

Problem	Theoretical measure	Evaluation	Conclusion
00	0000	000	⊙●
Thank you!			

Thank you for your attention! Have you any question?

17 / 17

э