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Newspaper sales

De Telegraaf

Major Dutch newspaper (circulation over 1
million).

15.000 outlets.

7 days a week.

“Right of return”

History of roughly 5 years.

Delay of 4 weeks between most recent sales
figure and delivery.
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Data
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Low signal-to-noise ratio.
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Explanatory variables

recent sales (and sellouts)

last year’s sales

season

holidays

weather

news content

. . .

more sales with nice weather
less sales with nice weather

Many (possible) explanatory variables.
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“Classical” multi-task learning

explanatory variables

points of sale

features

Model for the sales yi(t) of point of sale
i in week number t given explanatory
variables x(i, t).

Hidden units:

fk(i, t) = tanh

∑
j

Ψkjxj(i, t)

 .

Output units:

yi(t) =
∑

k

θikfk(i, t) .

All points of sale combined into one big network, sharing the first layer.

Caruana, Machine Learning, 1997; Thrun & Pratt, “Learning to Learn”, 1997.
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Does it help?

Comparison with carefully handcrafted features
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Overfitting starts with three hidden units. . .

Heskes, ICML, 2000.
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Does it make sense (1)?
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Different aspects enter with the addition of each hidden unit.
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Does it make sense (2)?

recent sales recent sellouts weather figures season

1

2

First hidden unit mainly represents recent sales (short term effects);
second hidden unit mainly seasonal and weather aspects.
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The Bayesian way
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Empirical distribution of
maximum-likelihood solutions for the
task-specific parameters θi, maximizinga

P (yi|θi).

aFor notational conveniences, we consider
the inputs x and weights Ψ fixed and given.

Suggests:

Treat the task-specific parameters as random variables. . .

. . . for which we can define priors . . .

. . . and then compute posteriors using Bayes’ rule.
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Summary of the model

x: inputs, e.g., explanatory variables in a
particular week for a specific outlet;

y: outputs, e.g., sales in a particular week
for a specific outlet;

z: task-specific properties, e.g., location of
an outlet;

θ: task-specific parameters, e.g.,
hidden-to-output weights in MLP;

Φ: hyperparameters specifying the prior on θ;

Ψ: other shared parameters, e.g.,
input-to-hidden weights in MLP.
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Priors on the task-specific parameters

Obvious choice:
P (θi|Ψ) = N (θi;m,V ) ,

a Gaussian with mean m and covariance matrix V , i.e., Ψ = {m,V }.

Other choices:

a mixture of Gaussians (task-clustering):

P (θi|Ψ) =
∑
α

παN (θi;mα, Vα) ;

a “mixture-of-experts” prior (task-gating):

P (θi|Ψ) =
∑
α

πα(zi)N (θi;mα, Vα) ,

for example with

πα(zi) =
exp

∑
l γαlzil∑

α′ exp
∑

l γα′lzil
.
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Empirical Bayes

Maximize the loglikelihood

log P (y|Φ) =
∑

i

log
∫

dθP (yi|θ)P (θ|Φ) ,

with respect to Φ.

Called empirical Bayes or type-II maximum likelihood procedure.

Motivated as an approximation to hierarchical Bayes: since we can use all
data to infer the hyperparameters, we do not have to integrate them out.
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Expectation Maximization

Expectation-Maximization algorithm.

E-step: compute P (θ|yi,Φold) for
all tasks i.

M-step: update Φold to Φnew

maximizing∑
i

∫
dθP (θ|yi,Φold) log P (θ|Φ) .

individual
added     
fitted    

See also: Schwaighofer, Yu, & Tresp, NIPS 17, 2005.
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Does it help (1)?
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Best performance requires both a bottleneck (“feature extraction”) and the
Bayesian part (“regularization”)

Heskes, ICML, 2000.
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Does it help (2)?
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Case 3

Commercial product, consistently outperforms competitors.

Heskes et al., Neural Computing and Applications, 2004
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Does it make sense (1)?
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Maximum-a-posteriori solutions
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Does it make sense (2)?
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Maximum-a-posteriori solutions
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How about different priors?

Technically hardly more complicated. Results make sense. . .
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. . . but do not improve performance by any significant amount (in this case).

Bakker & Heskes, JMLR, 2003.

Tom Heskes (Radboud University Nijmegen) Multi-Task Learning: The Bayesian Way July 12, 2006 19 / 22



Outlook

Multitask learning lends itself nicely for a Bayesian approach.

Direct interpretation of the prior (even if your not a Bayesian).

Empirical Bayes for learning the hyperparameters as well as other parameters
shared between the tasks.

Good performance.

A lot of work to do:

appropriate models, e.g., for time series analysis;

approximate inference.

But once translated not so different from other Bayesian
technology. . .
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Comparison with kernel approaches

Multi-task linear models with Gaussian priors are Gaussian processes.

What does the kernel for a bottleneck MLP look like (probably easy)?

. . . and for task-clustering and gating priors?

What are we better at: to come up with appropriate kernels or with
appropriate models and priors?

Which approach is most sensitive to a suboptimal choice?

Which is the most efficient approach?

E.g., Schwaighofer et al., NIPS 17, 2005; Evgeniou et al., JMLR, 2005.
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Technicalities

We (often) seem to “assume”

same inputs for all tasks;

same noise variance (σ) for all tasks.

Procedures and analysis get quite complicated if we do not. Any “easy” solutions?

Any benchmark data sets for multitask learning?
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