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Learning Multiple Tasks Simultaneously

Learning multiple related tasks vs. learning independently.

Few data per task; pooling data across related tasks.

Examples:

— user preferences (movies, products etc.)
— computer vision (recognizing faces, objects etc.)
— text classification

etc.



Multi-Task Feature Learning

e Assumption: common underlying representation across tasks.

e A small set of shared features ([Baxter 1995], [Torralba et al. 2004],
[Ando & Zhang 2005] etc.).



Learning Paradigm

Taskst=1,...,T.

m examples per task: (41, 9s1), - -, (Tem, Yem) € IRY x TR,

Estimate f; : R — IR,

Consider features

Predict using functions

t=1,...,T.



Weighting Features

e feature importance vs. tasks is described by the matrix

a1 ... air a
A= : T : = : — ai
d
aqi1 - .. aqr —a
where
T __
a = (aila . aaiT)

ait

ar = :



Sharing Features Across Tasks

e Desiderata:

1. a low-dimensional data representation shared across the tasks
2. the importance of each feature is preserved across the tasks

3. convex formulation



Sharing Features Across Tasks

e In terms of matrix A:

1. most a* should equal zero

2. for each 4, the |a;;| should be similar
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(2,1)-Norm

e Approximate desiderata 1,2 using the norm

1A

t=1

d
._ 2
21 = E E:az’t
=\

— First compute the 2-norms of the rows: |lal(|s, ..., ||a%|2

— Then compute the 1-norm of the resulting vector: Zle |a]]>.



(2,1)-Norm

Want the (2, 1)-norm to be small.
Small 1-norm favors sparsity and small 2-norm favors uniformity.

Hence, small (2, 1)-norm means

— many rows a’ are ~= (

— for each i, the |a;| are similar.



(2, 1)-Norm Regularization

T m d
min ZZL(ytﬂ’Za“h Tt;))

t=1 5=1 1=1

e This is a convex problem.

. A e R™>T

e The number of features in the solution decreases with ~
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L1 Regularization

e For one task, this is simply L1 regularization:

m d
min ZL(yj,Zaihi(xj))+7|‘a"|% :
j=1 i=1

e |lal|; approximates #{nonzero entries of a}.

e Many components of the solution will be =~ 0.

a € R?
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Learning the Features

e How about learning the features as well?

e Focus on linear, orthonormal features
hi(z) = (ug, x)

T m

min { S°N Ly, (an, UTwe)) + 7 A3, « UTU =1, A€ RT

t=1 j=1

e Non-convex, nonsmooth problem.
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Convex Reformulation
e Variable transformation

W=lw, ... wr|l= U

dxT dxd

D=U Diag( \|\|jl :|221> ol

e Optimal W will be low-rank.

e D combines features U and feature weights A.

A

dxT
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Convex Reformulation (cont.)

T m T
inf{ZZL(yt], Wi, Ttj)) Z wy, D71 wWy)

t=1 j=1

. W e R, D=0, trace(D) < 1}

. ZtT:1 (wg, D~ 1wy) induces relations between the tasks.

e Jointly convexin W and D!
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Alternating Algorithm

e Alternate between W (supervised learning) and D (unsupervised
“correlating” of tasks).

Iiva
d

while convergence condition is not true do

Initialization: set D =

fort =1,...,T, learn w; independently

by minimizing > "0 | L(ytj, (we, Tt5)) + v (we, D wy)
end for
Find the D that best “relates” the tasks:

.1
D=- WV(VM‘jMﬁ)% (using SVD)

end while

14



Experiment 1 (toy data)

T = 200 tasks.

5 training examples per task. Inputs uniformly drawn from [0, 1]

Outputs y;; = (a, x¢;) + noise.
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Experiment 1 (toy data)
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Input dimensionality

e Learning multiple tasks together improves performance.

e /Improvement is large, even when most features are irrelevant.

e More tasks lead to better estimates of the features.

16



Experiment 2 (real data)

Consumers’ ratings of products [Lenk et al. 1996].

180 persons (tasks).

8 PC models (training examples); 4 PC models (test examples).

13 binary input attributes (RAM, CPU, price etc.).

Integer output in {0,...,10} (likelihood of purchase).
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Experiment 2 (real data)
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e Performance improves with more tasks (for independent, error = 16.53).

e A single most important feature shared by all persons.
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Experiment 2 (real data)
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e The most important feature weighs technical characteristics (RAM,
CPU, CD-ROM) vs. price.
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Summary

Multi-task feature learning

— low-dimensional data representation shared by a pool of tasks

— feature importance preserved across tasks.
Convex problem. Converges to global solution.
Alternating algorithm.

Solution is low-rank. Algorithm selects the salient features. Additional
tasks enhance prediction.
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Future Work

e More general, nonlinear features.
e Handle > 1 clusters of tasks. Hierarchical models of tasks/features.

e Connection to Bayesian methods.
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Regularization with the Trace Norm

Minimizing over D yields

T m

Z ZL(ytz‘, (wy, 243)) + v ||

t=1 =1

Involves the trace norm of W (compare to [Srebro et al.]).
Favors low-rank matrices (also apparent from W = U A).

Convex but nonsmooth problem.
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