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Learning Multiple Tasks Simultaneously

• Learning multiple related tasks vs. learning independently.

• Few data per task; pooling data across related tasks.

• Examples:

– user preferences (movies, products etc.)

– computer vision (recognizing faces, objects etc.)

– text classification

etc.
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Multi-Task Feature Learning

• Assumption: common underlying representation across tasks.

• A small set of shared features ([Baxter 1995], [Torralba et al. 2004],

[Ando & Zhang 2005] etc.).
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Learning Paradigm

• Tasks t = 1, . . . , T .

• m examples per task: (xt1, yt1), . . . , (xtm, ytm) ∈ IRd × IR.

• Estimate ft : IRd → IR, t = 1, . . . , T .

• Consider features
h1(x), . . . , hd(x)

• Predict using functions

ft(x) =

d
∑

i=1

aithi(x)
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Weighting Features

• Feature importance vs. tasks is described by the matrix

A =





a11 . . . a1T
... . . . ...
ad1 . . . adT



 =





a1

...
ad



 =



a1 . . . aT





where
ai = (ai1, . . . , aiT )

at =





a1t
...
adt




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Sharing Features Across Tasks

• Desiderata:

1. a low-dimensional data representation shared across the tasks

2. the importance of each feature is preserved across the tasks

3. convex formulation
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Sharing Features Across Tasks

• In terms of matrix A:

1. most ai should equal zero

2. for each i, the |ait| should be similar
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(2, 1)-Norm

• Approximate desiderata 1, 2 using the norm

‖A‖2,1 :=

d
∑

i=1

√

√

√

√

T
∑

t=1

a2it

– First compute the 2-norms of the rows: ‖a1‖2, . . . , ‖a
d‖2

– Then compute the 1-norm of the resulting vector:
∑d

i=1 ‖a
i‖2.
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(2, 1)-Norm

• Want the (2, 1)-norm to be small.

• Small 1-norm favors sparsity and small 2-norm favors uniformity.

• Hence, small (2, 1)-norm means

– many rows ai are ≈ 0

– for each i, the |ait| are similar.
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(2, 1)-Norm Regularization

min







T
∑

t=1

m
∑

j=1

L(ytj,

d
∑

i=1

aithi(xtj)) + γ ‖A‖22,1 : A ∈ IRd×T







• This is a convex problem.

• The number of features in the solution decreases with γ
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L1 Regularization

• For one task, this is simply L1 regularization:

min







m
∑

j=1

L(yj,

d
∑

i=1

aihi(xj)) + γ ‖a‖21 : a ∈ IRd







• ‖a‖1 approximates #{nonzero entries of a}.

• Many components of the solution will be ≈ 0.
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Learning the Features

• How about learning the features as well?

• Focus on linear, orthonormal features

hi(x) = 〈ui, x〉

min







T
∑

t=1

m
∑

j=1

L(ytj, 〈at, U
>xtj〉) + γ ‖A‖22,1 : U>U = I, A ∈ IRd×T







• Non-convex, nonsmooth problem.
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Convex Reformulation

• Variable transformation

W =



w1 . . . wT



= U A

d×T d×d d×T

D = U Diag

(

‖ai‖2
‖A‖2,1

)

U>

• Optimal W will be low-rank.

• D combines features U and feature weights A.
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Convex Reformulation (cont.)

inf

{

T
∑

t=1

m
∑

j=1

L(ytj, 〈wt, xtj〉) + γ

T
∑

t=1

〈wt, D
−1wt〉

: W ∈ IRd×T , D Â 0, trace(D) ≤ 1

}

•
∑T

t=1 〈wt, D
−1wt〉 induces relations between the tasks.

• Jointly convex in W and D !
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Alternating Algorithm

• Alternate between W (supervised learning) and D (unsupervised
“correlating” of tasks).

Initialization: set D =
Id×d

d

while convergence condition is not true do

for t = 1, . . . , T, learn wt independently

by minimizing
∑m

j=1L(ytj, 〈wt, xtj〉) + γ 〈wt, D
+wt〉

end for

Find the D that best “relates” the tasks:

D = (WW>)
1
2

trace(WW>)
1
2

(using SVD)

end while
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Experiment 1 (toy data)

• T = 200 tasks.

• hi(x) = x, i = 1, . . . , d.

• ait =

{

N (0, σi) i = 1, . . . , 5

0 i = 6, . . . , d

• 5 training examples per task. Inputs uniformly drawn from [0, 1]d.

• Outputs ytj = 〈at, xtj〉+ noise.
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Experiment 1 (toy data)

Test error
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• Learning multiple tasks together improves performance.

• Improvement is large, even when most features are irrelevant.

• More tasks lead to better estimates of the features.

16



Experiment 2 (real data)

• Consumers’ ratings of products [Lenk et al. 1996].

• 180 persons (tasks).

• 8 PC models (training examples); 4 PC models (test examples).

• 13 binary input attributes (RAM, CPU, price etc.).

• Integer output in {0, . . . , 10} (likelihood of purchase).
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Experiment 2 (real data)

Test error
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• Performance improves with more tasks (for independent, error = 16.53).

• A single most important feature shared by all persons.
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Experiment 2 (real data)
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• The most important feature weighs technical characteristics (RAM,
CPU, CD-ROM) vs. price.
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Summary

• Multi-task feature learning

– low-dimensional data representation shared by a pool of tasks

– feature importance preserved across tasks.

• Convex problem. Converges to global solution.

• Alternating algorithm.

• Solution is low-rank. Algorithm selects the salient features. Additional
tasks enhance prediction.
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Future Work

• More general, nonlinear features.

• Handle > 1 clusters of tasks. Hierarchical models of tasks/features.

• Connection to Bayesian methods.
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Regularization with the Trace Norm

• Minimizing over D yields

T
∑

t=1

m
∑

i=1

L(yti, 〈wt, xti〉) + γ ‖W‖2Σ

• Involves the trace norm of W (compare to [Srebro et al.]).

• Favors low-rank matrices (also apparent from W = UA).

• Convex but nonsmooth problem.
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