

# **SURF 2008**

# Pavement prediction performance models and relation with traffic fatalities and injuries



CETE of Lyon – Research team n°12 (LCPC) •

Researcher •

Veronique.cerezo@developpement-durable.gouv.fr





#### **Table of content**

- Context of the study and objectives
- Methodology
- O Evolution laws
- Link with accidents
- Next steps

#### Context of the study

- French road management policy = regular measurements of road characteristics
- lot of data available
- A part of accidents are due to infrastructure characteristics (skid resistance, geometry...)
- correlations?
- threshold values?

#### Objectives

- Determining evolution laws
  - predict road skid resistance evolution with time
  - increase management efficiency
- Correlations with accidents
  - detect threshold values of skid resistance

How to do that?



### Methodology

- Extensive literature review
- Creation of a database
  - roads with traffic > 10 000 veh./day
  - 5 types of pavement surfaces
  - $\approx 500 \text{ km (path = 20 m)}$
  - SFC and MPD
  - Geometry (radius...)
  - Accidents data (2000 2006)



### Methodology





#### Mesures d'adhérence avec l'appareil SCRIM équipé d'un Rugolaser

Route: 76 N0028

du PR :0 +

au PR:4 +1200

Echelle 1 cm pour 250 m





#### Methodology

- Statistical analysis and correlations
  - SFC evolution laws depending on age and traffic
  - Inclusion of geometry in the analysis
  - Comparison with accidents occurrence
- Next steps to complete the study

#### **Evolution laws (1)**

- Global analysis and analysis for each pavement type
- Non-linear regressions depending on:
  - Age (months)
  - Total Traffic (TT = 30\*ADT\*AGE)
  - NE (equivalent axles 13t = 365\*TRA\*AGE\*CAM)
- Global decrease of SFC with a logarithmic shape of the curves

#### **Evolution laws (2)**

Thin asphalt concrete



Coefficients of regression variable (0,09 – 0,50)

#### **Evolution laws (3)**

- Important seasonal effects → corrections?
  - Roads of the database covers a wide area
  - Lack of reference surfaces
- way of improvement
- Geometry included: straight lines / curves
  - Data merged by considering classes of radius (0-150 m, 150-300 m, 300-600 m, > 600 m)
  - Classes chosen with safety studies

#### **Evolution laws (4)**

- Similar work → similar results with geometry
  - Global decrease of SFC with a logarithmic shape of the curves in straight lines and in curves
  - Coefficients of regression weak
  - is the test tracks the same in curves (especially with low radius of curvature)?
  - is SFC adapted to analysis in straight lines?

## Link with accidents (1)

- O Accident rate:
  - number of accidents per year for 10<sup>8</sup> vehicles.km on an itinerary

$$\tau_{\rm acc} = \frac{n_{\rm acc}}{n_{\rm yeh} \Delta t.L} \times 10^8$$

- Wet surfaces considered
- SFC values grouped in classes of 0.10 SFC units
- Radius grouped in classes of 100 m units

#### Link with accidents (2)

#### Some correlations



- Rural roads
- Average daily traffic around 37 000 veh./day

Threshold value for SFC = 0.5



#### Link with accidents (2)

#### Special results...



- Rural roads
- Average daily traffic > 45 000 veh./day
- accidents are mainly due to human behaviour

#### **Concluding remarks**

- First part of the study presented in SURF 2008
- Next steps:
  - Increase the database size with roads having traffic < 40 000 veh./day</li>
  - References surfaces: seasonal effects corrections
  - More complex statistical methods
  - Use other safety indicators (accidents on wet surfaces compare to accidents on dry surfaces...)

**SURF 2008** 

# THANK YOU FOR YOUR ATTENTION...

<u>veronique.cerezo@developpement-durable.gouv.fr</u> <u>michel.gothie@developpement-durable.gouv.fr</u>