6th symposium on pavement surface characteristics

DEVELOPMENT OF HALF-CAR BASED RUTTING INDEX

- Kazuya TOMIYAMA •
- Kitami Institute of Technology/Japan
 - Doctoral Student •
- tomiyama@vortex.civil.kitami-it.ac.jp
 - Akira KAWAMURA
 - Tateki ISHIDA

•

•

- Shigenori NAKAJIMA
 - Takashi NAKATSUJI

SURF 2008

Contents

- 1. Motivation
- 2. Mathematical
- 3. Definitions

4. Applicability 5. Conclusions

1.1. Motivation

Current approach: Rut Depth (RD) is...

- easy to obtain an individual value of the profile
- directly calculated from the measured profile

1.2. Objective The new approach: based on the Human-Road-Vehicle Road-vehicle interaction Human (user) centered evaluation Long, Axis Development of M_H, I_H Half-Car based index ^{za} Vehicle vibration Z_1 V(t) $\exists C_2$ User's ride sensation Trans. Axis z_{p1} z_{p2}

SURF 2008

2. Mathematical Derivations

Half-Car simulation model

$$\begin{split} M_2 \ddot{z}_1 &= K_2 (z_{p1} - z_1) - C_1 (\dot{z}_1 - \dot{z}_a) - K_1 (z_1 - z_a) \\ M_2 \ddot{z}_2 &= K_2 (z_{p2} - z_2) - C_1 (\dot{z}_2 - \dot{z}_b) - K_1 (z_2 - z_b) \\ M_H \ddot{z}_3 &= C_1 (\dot{z}_1 - \dot{z}_a) + K_1 (z_1 - z_a) \\ &\quad + C_1 (\dot{z}_2 - \dot{z}_b) + K_1 (z_2 - z_b) \\ I_H \ddot{\phi} &= \{C_1 (\dot{z}_1 - \dot{z}_a) + K_1 (z_1 - z_a)\} L \\ &\quad - \{C_1 (\dot{z}_2 - \dot{z}_b) + K_1 (z_2 - z_b)\} L \end{split}$$

 I_H : roll moment of inertia, K_1 : vehicle spring constant, K_2 : tire stiffness, L: half of tread width, M_H spring mass,

 M_2 : unsprung mass,

 z_a, z_b : sprung mass displacement,

 z_{p1}, z_{p2} : transverse profile as inputs,

- z_1, z_2 : unsprung mass displacement,
- z_3 : vehicle cg. displacement,

 ϕ : roll rotation of sprung mass,

(cg. = center of gravity)

Parameter: Roll Rate

2. Mathematical Derivations Simulation Procedure The measurement data for input to the simulation is given as a single cross-section profile The simulation process requires successive crosssections toward forward direction Transition Speed enables the simulation for a single profile, and simulate lane-change maneuver $v(t) = V(t) * W_1 / \sqrt{W_1^2 + W_2^2}$ Primary Lane W_{1} Secondary Lane $l = L * W_1 / \sqrt{W_1^2 + W_2^2}$ W_{2} Definition of the transition speed

Input Profile Data

- The input data is expanded by the combination with symmetrical itself
- First First
- The profile is assumed to have a constant slope between sampled elevation points

Specifications of the Half-Car

The set of specific parameter values that is often called Golden Car (by ASTM No. E1170)

$$K_1/M_H = 32(s^{-2}); K_2/M_H = 326(s^{-2}); M_2/M_H = 0.075;$$

 $C_1/M_H = 3(s^{-2}); I_H/(M_Hb^2) = 0.42; b = 2 * L = 1.8(m);$

Driving Condition

The transition width W₁ and distance W₂ are decided on the basis of ISO 3888-1

 $W_1 = 3.5(m); \quad W_2 = 30(m)$

The simulated forward speed, V(t), is defined as 80km/h, then transition speed v(t) and I are

$$v(t) = 2.58(m/s); \quad l = 0.89(m)$$

Definition of HRD

HRD: Half-Car based index for Rutting Distress

- The HRD is the root mean square (RMS) value of the roll rate from the Half-Car simulation
- Free HRD has unit of angular velocity such as rad/s

 $HRD = AVx_{RMS}$

where AVx_{RMS}: RMS of roll rate of sprung mass (rad/s)

Stationary HRD

For pavement monitoring applications, the HRD can be reported as a summarized value in some longitudinal segments

4. Applicability

- Which is the best estimator of rideability
 - Rut Depth is geometrically and directly calculated form the measured profile
 - HRD is computed from the measured profile based on the vehicle vibration response

- Subjective survey by a driving simulator
 - Comparison between Rut Depth and HRD
 - Applicability of HRD for the rutting evaluation

4.1. Driving Simulator

& KITDS:

Kitami Institute of Technology Driving Simulator

Conventional simulator

Safety of subjects
Easy setting of test conditions

Repeatability of test conditions

Economical testing

KITDS

Road surface evaluation

- Roughness
- Rutting
- Skid resistance

4.2. Road Surface Characteristics 1 2 3 4 5

Four rutted profiles were obtained form the PIARC EVEN data

Characteristics of the rutted profiles

Section	SITE in EVEN Project	Wearing/Flowing	Dual/Single
А	SITE3, Long. Dist.=220m	Flowing	Dual
В	SITE4, Long. Dist.=160m	Flowing	Single
С	SITE7, Long. Dist.=160m	Wearing	Single
D	SITE11, Long. Dist.=240m	Wearing	Dual

4.2. Road Surface Characteristics 1 2 3 4 5

Evaluation Result of Analyzed Profiles

Calculation results of the indices

Section	Location	HRD:	Rut Depth - Average	Rut Depth - Peak
	in the EVEN Project	x 10 ² rad/s	Method: mm	Method: mm
Α	SITE3, Dist.=220m	15.5	24	25
В	SITE4, Dist.=160m	5.5	14	25
С	SITE7, Dist.=160m	4.4	25	25
D	SITE11, Dist.=240m	6.3	25	25
Perfect	_	0	0	0
Smooth	-	0	0	0

Lane Line

Lane Line

4.3. Driving Scenario

- 8 drivers were required to drive at one time on each analyzed profile
 - Double lane-change maneuver defined by the ISO
 - Keeping a constant driving speed of 60km/h

4.3. Driving Scenario

- 8 drivers were required to drive at one time on each analyzed profile
 - Double lane-change maneuver defined by the ISO
 - Keeping a constant driving speed of 60km/h

SURF 2008

5. Conclusions

- This study developed a new index of rutting based on the vehicle vibration response
 - The HRD can be suitable for predicting the severity levels of rutting distress in terms of the drive's perception of ride quality.
 - Any definitions of rut depth cannot be applicable in the case of which profiles are indicated to the same depth with including the irregularities in their shapes

Thank you for your kind attention !!

DEVELOPMENT OF HALF-CAR BASED RUTTING INDEX

Kazuya TOMIYAMA tomiyama@vortex.civil.kitami-it.ac.jp

Traffic Engineering Laboratory Dept. of Civil & Environmental Engineering Kitami Institute of Technology Japan

