
The UoS LAVA group Approach to Generic
Image Categoristion

Jason Farquhar, Sandor Szedmak, Hongying Meng, John Shawe-Taylor
jdrf@ecs.soton.ac.uk

School of Electronics and Computer Science
University of Southampton

UoS Generic Image Categorisation – p. 1/19

http://www.ecs.soton.ac.uk/~jdrf99r


The “set-of-patches” approach to image categorisation.
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1. Image Processing – extract a set of interesting local
patch descriptors from each image.

2. Feature Selection
3. Kernel Computation
4. Classifier Learning
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1. Image Processing
2. Feature Selection – identify features of the patch

descriptions most useful for categorisation.

3. Kernel Computation
4. Classifier Learning
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1. Image Processing
2. Feature Selection
3. Kernel Computation – compute a kernel between sets

of features in each image.

4. Classifier Learning
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1. Image Processing
2. Feature Selection
3. Kernel Computation
4. Classifier Learning – learn a classifier from the

computed kernels.
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1. Image Processing
2. Feature Selection
3. Kernel Computation
4. Classifier Learning
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Image Processing

Similar to many of the other approaches.
1. Patch detection – identify interesting patches in the

image.
• Lapacian of Gaussians – detects circular “blob like”

structures [Lindeberg (1998)].
• Scale invariant Harris-Affine – detects elliptical

patches containing corners or highly textured parts
of the image. [Mikolajczyk & Schmid (2004)]

LoG or Harris-Affine.
2. Patch description – SIFT
3. Output – a set of between 20 and 3000 128d SIFT

patch descriptions per image
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Image Processing

Similar to many of the other approaches.
1. Patch detection – LoG or Harris-Affine.
2. Patch description – produce reproducible and robust

descriptions of the patches.
• SIFT – describes circular patch in terms of 8

smoothed directional image gradients at 16
positions within the patch. [D. Lowe 2004]

SIFT
3. Output – a set of between 20 and 3000 128d SIFT

patch descriptions per image
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The “set-of-patches” approach to image categorisation.
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1. Image Processing

2. Feature Selection
3. Kernel Computation
4. Classifier Learning

UoS Generic Image Categorisation – p. 5/19



Feature Selection

• SIFT descriptors high dimensional and contain a lot of
redundant information.
Eigenvalue decomposition of the data
covariance shows that SIFTs dimen-
sions are highly correlated
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x 104

λ

Thus using full dimensional features,
• May emphasise un-important noisy variations
• Significantly increase learning time

• Further, most of the detected image patches are in the
background so aren’t useful for object discrimination.

Use feature selection techniques to identify most useful
patch features for categorisation.
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Feature Selection(2)

Many possible feature selection approaches, methods we
have tried are,
1. Clustering – GMMs or k-Means used to identify points

and regions in feature space which contain useful
information.
Then define new features, e.g. NN region membership
or center distances.

2. Sub-space mapping – PCA or PLS used to identify
feature space directions which contain useful
information.

Initial experiments indicated that PLS gave best results so
only examine this here.
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Feature Selection(4)— Partial Least Squares (PLS)

PLS is similar to PCA except
• takes account of output labels Y ∈ R

N×L,
• by finding pairs of directions u,v which maximise

projected data/output cross-covariance,
u,v = argmax

u,v

[cov {Xu, Y v}]2

• This is equivalent to finding the first eigenvector of,
λu = XTY Y TXu

• Can repeat this process after deflating X to remove
information already used to get > L directions,

Xi+1 = Xi(I − uiu
T
i )

(N.B. need to undo the deflations to get final feature
directions)
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Feature Selection(5)

• Given feature directions u1,u2, . . .ud2
compute new

features X̂ by projecting X onto these directions,

X̂ = X ∗ [u1u2 . . .ud2
]

• Output is set of features per image
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The “set-of-patches” approach to image categorisation.
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1. Image Processing
2. Feature Selection

3. Kernel Computation
4. Classifier Learning
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Kernel Computation

• Input to this stage is set of feature vectors (one per
detected patch) per-image

• Trying to categorise images not patches, so need a
per-image kernel matrix for classifier learning

• Define a kernel function over sets of feature vectors to
compute this kernel matrix. Compute this in 2 stages,
1. Map from sets of features to a single description
2. Compute a kernel between the descriptions
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Kernel Computation(2) – Set → description mapping

• Represent image i’s set of features, X̂i, as a
parameterised density distribution,

X̂i → ρ(x|θi)

Many possible density models, e.g. histograms, GMMs

• For ease of kernel computation use a full-covariance
Gaussian Probability Density Function (PDF),

X̂i → N (x|µi,Σi)

Use MAP to fit this model,
• Provide regularisation for noise tolerance and

capacity control,
• Avoid singularities with low numbers of features.

UoS Generic Image Categorisation – p. 12/19



Kernel Computation(2) – Set → description mapping

• Represent image i’s set of features, X̂i, as a
parameterised density distribution,

X̂i → ρ(x|θi)

Many possible density models, e.g. histograms, GMMs
• For ease of kernel computation use a full-covariance

Gaussian Probability Density Function (PDF),
X̂i → N (x|µi,Σi)

Use MAP to fit this model,
• Provide regularisation for noise tolerance and

capacity control,
• Avoid singularities with low numbers of features.

UoS Generic Image Categorisation – p. 12/19



Kernel Computation(3) – PDF Kernels

• Need a kernel between PDFs
• Many possible PDF similarity measures, e.g. K-L

divergence, X 2, Mutual-Information, Fisher-metric, etc.
• Proving these produce valid kernels is difficult

• Use the Bhattacharyya affinity which is clearly a kernel,
KB(P1(x),P2(x)) =

∫ ∞

−∞

√

P1(x)
√

P2(x)dx

• KB has an analytic solution for pairs of Gaussians
KB(N (x|µ1, Σ1),N (x|µ2, Σ2)) =

1

2

d

2

Σ
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+
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1. Image Processing
2. Feature Selection
3. Kernel Computation

4. Classifier Learning
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Classifier Learning

We have conducted experiments using either a
conventional SVM or our extension, SVM_2K.

• SVM_2K is a two-kernel extension of the SVM,
• Uses a synthesis constraint, ψ, to force each

sub-SVMs output, hA, hB , to be correlated,
ψ(hA(xA

i ), hB(xB
i )) ≤ δ

• Idea is that different views of the same object should
have correlated signal but (hopefully) uncorrelated
noise.

• This is sometimes called co-training or multi-view
learning.
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Classifier Learning(2) — SVM_2K

Classifier A

Test Kernels

Classifier Learning

Classifier B

differenceLimit
between

decision values

Combined Lables
BSVM

ASVMKernel
A

Kernel
B

Classification
PSfrag replacements

|hA(φA(x))−hB(φB(x))|

The modified primal optimisation problem is,
min 1

2
(||wA||22 + ||wB ||2

2
) + 1

T (CAξ
A + CBξ

B +Dη)

subject to
Synthesis 99K ψ(〈wA, φA(xA

i
)〉 + bA, 〈wB, φB(xB

i
)〉 + bB) ≤ ηi + ε,

subSVM A 99K yi(〈wA, φA(xA
i
)〉 + bA) ≥ 1 − ξA

i
,

subSVM B 99K yi(〈wB, φB(xB
i

)〉 + bB) ≥ 1 − ξB
i
,

ξA ≥ 0, ξB ≥ 0, η ≥ 0, i = 1, . . . ,m.
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Classifier Learning(3) — SVM_2K

• Using ψ(x) = abs(x) resulting problem has special
structure which allows efficient solution, using;
1. Augmented Lagrangian: To eliminate equality dual

constraints
2. Conditional Gradient: To solve problem with fixed

Lagrangian multipliers
3. Linear Programming: To derive the next

approximation of the optimum.
• This approach has linear complexity which the key to

the algorithms efficiency!
• It is over 1000 times faster for this problem than

general purpose optimisers.
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Results – VOC test1 EER

Pt. Detector Learner M’bikes Bikes People Cars
LoG SVM 94.9 86.8 83.3 91.3
Harris-Affine SVM 94.0 85.1 84.1 89.8
LoG + Har-Aff SVM_2K 97.2 89.5 88.1 91.3

train and val used for training and parameter tuning:
• Feature Selection: 20 dimensional PLS
• Same directions used for all categories
• MAP prior = training set covariance and mean,

weighted to represent 10 “virtual” feature vectors
• SVM penalties: determined by cross-validation for

each kernel.

• PLS feature selection plus PDF kernels gives good
basic performance

• LoG seems to be slightly better than Har-Aff, probably
because generates more patches (≈1000 vs. ≈100)

• Combining features with SVM_2K further improves
performance
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Conclusions & Further work

No surprises here,
• Feature selection is critical to performance ...
• as is identifying a good kernel function

Also...

• Forcing classifiers outputs to correlate can improve
performance.

Future Work
• Alternative feature selection techniques

• per-category feature selection
• methods to suppress “non-object” patches

• Using more than 2 kernels in SVM_2K
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