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The transductive learning assumption

Inductive, semi-supervised and transductive learning

Inductive learning

We observe (X1,Y1), . . . , (Xn,Yn)

Question: For any new input x , what is the associated y?

Semi-supervised learning

We observe (X1,Y1), . . . , (Xn,Yn) and Xn+1, . . . ,Xn+t

Question: For any new input x , what is the associated y?

Transductive learning

We observe (X1,Y1), . . . , (Xn,Yn) and Xn+1, . . . ,Xn+t

Question: what are the outputs Yn+1, . . . ,Yn+t?
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The transductive learning assumption

The key semi-supervised and transductive learning
assumption

Key assumption
The decision boundary appears in a low density region of the
input space.
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Convergence of the graph Laplacian

Input data distribution

X1,X2, . . . drawn i.i.d. from P(dx) = p(x)dVM(x)

VM : natural volume element

M ⊂ RQ : unknown submanifold of dimension q ≤ Q
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Convergence of the graph Laplacian

Laplace operator

If f : R→ R twice differentiable:

∆f = f ′′

If f : RQ → R twice differentiable:

∆f =
Q∑

i=1

∂2f
∂x2

i

For M a submanifold of RQ and f : M → R twice
differentiable:

∆f = div(grad f )
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Convergence of the graph Laplacian

The s-weighted Laplace-Beltrami operator

M a submanifold of RQ

p a density on M
s ∈ R
f : M → R twice differentiable:

∆sf :=
1
ps div(ps grad f )

Main properties:
• ∆0 = ∆
• ∀f ,g

∫
M f (∆sg) psdVM = −

∫
M 〈∇f ,∇g〉psdVM

Problem
Given f : M → R, how to approximate (∆sf )(x) by only using
the values of f at x ,X1, . . . ,Xn ?
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Convergence of the graph Laplacian

Motivation

Clustering (Spielman & Teng, 1996, ...)

Dimensionality reduction (Belkin & Niyogi, 2003, ...)

Transductive learning (Belkin & Niyogi, 2004, ...)
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Convergence of the graph Laplacian

Neighbourhood graph

k̃ : R+ → R+ such that k(u) = 0 for u ≥ 1
k̃(‖Xi −Xj‖2/h2) : similarity measure between Xi and Xj for
the bandwith parameter h > 0
d̃(Xi) =

∑n
j=1 k̃(‖Xi − Xj‖2/h2)

k(Xi ,Xj) =
k̃(‖Xi−Xj‖2/h2)

[d̃(Xi )d̃(Xj )]λ
. λ = reweighting parameter

Definition
The neighbourhood graph:

V = {X1, . . . ,Xn}
E = {(Xi ,Xj) : k(Xi ,Xj) > 0}
w(Xi ,Xj) = k(Xi ,Xj)
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Convergence of the graph Laplacian

Neighbourhood graph
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Convergence of the graph Laplacian

Extended neighbourhood graph

Set of vertices: V = {x ,X1, . . . ,Xn}
Degree function: d(x) =

∑n
j=1 k(x ,Xj)

Averaging operator: for any f : M → R,

(Af )(x) =
n∑

j=1

k(x ,Xj)f (Xj).
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Convergence of the graph Laplacian

Definition of the “random walk” graph Laplacian

Random walk: (∆(rw)f )(x) = 1
h2

(
f − 1

d Af
)

(x)

Similar to:

f ′′(x) ≈ −2f (x)+f (x−h)+f (x+h)
h2

∝ 1
h2

(
f (x)− f (x−h)+f (x+h)

2

)

Let X0 = x and

T =

(
k(Xi ,Xj)∑n
`=0 k(Xi ,X`)

)

0≤i,j≤n

Tij ≥ 0 and
∑n

j=0 Tij = 1⇒ T is the transition matrix

(∆(rw)f )(x) =
1
h2

(
f (x)− EW1|W0=x f (W1)

)
.
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Convergence of the graph Laplacian

Definitions

random walk (∆(rw)f )(x) =
1
h2

(
f − 1

d
Af
)

(x)

unnormalized (∆(u)f )(x) =
(nhq)2λ−1

h2

(
df − Af

)
(x)

normalized (∆(n)f )(x) =
1

h2
√

d(x)

(
d

f√
d
− A

( f√
d

))
(x)

=
1
h2

(
f − 1√

d
A
( f√

d

))
(x)
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Convergence of the graph Laplacian

Convergence properties

Graph Laplacian convergence (Hein, Audibert & von Luxburg, 2005)

Let s = 2(1− λ). Under reasonable conditions on the submanifold M,
the kernel k̃ and the density p:

if h→ 0 and nhq+2/ log n→∞,

random walk: lim
n→∞

(∆(rw)f )(x) ∝ −(∆sf )(x) a.s.

unnormalized: lim
n→∞

(∆(u)f )(x) ∝ −p(x)1−2λ (∆sf )(x) a.s.

if h→ 0 and nhq+4/ log n→∞,

normalized: lim
n→∞

(∆(n)f )(x) ∝ −p(x)
1
2−λ∆s

( f
p 1

2−λ

)
(x) a.s.
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Convergence of the graph Laplacian

Convergence properties: discussion

The graph Laplacian converges to the true Laplacian (up to
some terms)!
All limits agree for λ = 1/2
All limits agree for uniform density
In other cases, the limits are different!
The data-dependent modification of the edge weights
allows to control the influence of the density

Dependence on q of (∆(u)f )(x) = (nhq)2λ−1

h2

(
df − Af

)
(x)
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Transductive inference using the graph Laplacian

A way of using the key assumption

Recalling the key assumption: The input density p at the
decision boundary is small

Incorporation of the prior knowledge:

min
f

c
∑

1≤i≤n
[Yi − f (Xi)]2 +

∫
M ‖∇f‖2psdVM ,

⇔ min
f

c
∑

1≤i≤n
[Yi − f (Xi)]2 −

∫
M f × (∆sf ) psdVM ,

⇔
≈

min
f

c
∑

1≤i≤n
[Yi − f (Xi)]2 − 1

n+t
∑n+t

i=1 f (Xi)∆sf (Xi)ps−1(Xi),
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Transductive inference using the graph Laplacian
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Transductive inference using the graph Laplacian

Approximating the graph Laplacian

Now we have seen that ∆(u)f  −ps−1 ∆sf . Therefore:

· · · ⇔
≈

min
f

c
∑

1≤i≤n
[Yi − f (Xi)]2 − 1

n+t
∑n+t

i=1 f (Xi)∆(u)f (Xi),

Besides we have
(
(∆(u)f )(Xi)

)
1≤i≤n+t ∝ (D −W )F , where

D is the diagonal matrix with Dii = d(Xi )
W is the weight matrix with Wij = k(Xi ,Xj )
F = (f (Xi ))1≤i≤n+t is the predicted output vector
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Transductive inference using the graph Laplacian

A linear system to solve

Let Y = (Y1, . . . ,Yn,0, . . . ,0)T ∈ Rn+t

Let C = Diag(c, . . . , c,0, . . . ,0) ∈ R(n+t)×(n+t)

The predicted output associated to the test points are the
last m elements of the vector F solving

min
F∈Rn+t

(F − Y )T C(F − Y ) + F T (D −W )F ,

By differentiation, the solutions satisfy

(D −W + C)F = CY

For the unlabeled input Xi , output sgn(Fi)

3 parameters: h, c, and s
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Image segmentation

Image segmentation

Partitioning an image into “meaningful” regions

A key task of computer vision (medical imaging,
photo/painting softwares,...)

An ill-posed problem⇒ utilize user-supplied seeds
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Image segmentation
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Image segmentation

Algorithm (1/2)
(Duchenne, Audibert, Keriven, Ponce, Segonne, 2008)

Parameters
s ≥ 0
σg > 0: scale of geometric neighbourhoods
σc > 0: scale of chromatic neighbourhoods
m ∈ N: size of the local patch

Let
C(i) = the RGB levels of a square patch of size 2m + 1
around the pixel i .
z(i) = the geometric position (row+column) of the pixel i

k̃(i , j) = e
− ‖z(i)−z(j)‖2

2σ2
g

− ‖C(i)−C(j)‖2

2σ2
c .
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Image segmentation

Algorithm (2/2)

Compute the matrix D and W :

Wi,j =
k̃(i , j)

[d̃(i)d̃(j)]1−s/2
Di,i =

∑

j

Wi,j

For the training pixel i , put Yi = −1 or +1 depending on
which zone the pixel i belongs to
Solve the large sparse linear system associated to

min
F∈Rn+t

∀i∈[[1,n]]Fi=Yi

F T (D −W )F

Output for the pixel j the label sgn(Fj)
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Image segmentation

Link to previous approaches

Our approach: min
F∈Rn+t

∀i∈[[1,n]]Fi=Yi

F T ∆(u)F with ∆(u) = D −W

Graph cut: min
F∈{−1;+1}n+t

∀i∈[[1,n]]Fi=Yi

F T ∆(u)F

For s = 2, Boykov et al. (2001,2006), Blake et al. (2006)
Normalized cut: s = 1 → ∆(u) is the matrix of the
eigenvalue problem used in (Shi & Malik, 2000)

Guan and Qiu (2006): min
F∈Rn+t

∀i∈[[1,n]]Fi=Yi

F T ∆(rw)2F .

∫
M ‖∇f‖2psdVM 6=

∫
M |∆f |2psdVM

Grady et al. (2004,2006): s = 2 (motivated by
graph-theoretical electrical potential)
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Image segmentation

Some experimental results
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Image segmentation

Some experimental results

Quantatively:
5.4% of the pixel of the grey band are misclassified in
average
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Interactive image search

Principle
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Interactive image search

Principle
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Interactive image search

Principle & Evaluation

Principle
(1) Display initial images
(2) Ask the user for the interesting/non-interesting ones
(3) Display new images and goto (2)

Evaluation: recall vs number of displayed images
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Interactive image search

Random walks

W weight matrix: Wi,j = k(Xi ,Xj), i , j ∈ [[1,n]]

D diagonal matrix: Di,i =
∑

j Wi,j

P = D−1W is a transition matrix
(λ1, ψ1), . . . , (λn, ψn) eigenvalues and eigenvectors of P
Xi → φ(Xi) = (ψ1,i , . . . , ψn,i)

Diffusion distance:

DM(Xi ,Xj) = ‖P(·|i)− P(·|j)‖2... =
n∑

`=1

λ2
`

[
φ`(Xi)− φ`(Xj)

]2

≈
L∑

`=1

λ2
`

[
φ`(Xi)− φ`(Xj)

]2
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Interactive image search

Random walks

Pk = Pk is a (k -step) transition matrix

Pk (j |i) =
∑

`1,...,`k−1

P(`1|i)P(`2|`1) · · ·P(j |`k−1)

k-step diffusion distance:

Dk ,M(Xi ,Xj) = ‖Pk (·|i)− Pk (·|j)‖2... =
n∑

`=1

λ2k
`

[
φ`(Xi)− φ`(Xj)

]2

≈
L∑

`=1

λ2k
`

[
φ`(Xi)− φ`(Xj)

]2
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Interactive image search

Exploitation-exploration

half exploitation and half exploration for the new display
half of the images are drawn according to

p(Xj) ∝ min
i positively labeled

Dk ,M(Xi ,Xj)

half of the images are drawn according to

p(Xj) ∝ max
i positively labeled

Dk ,M(Xi ,Xj)
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Interactive image search

Experimental results

Olivetti: 40 persons, 10 faces per person. Histogram
equalization, KPCA -> 20 components kept
Swedish: 15 categories of leaf silhouettes, 75 leafs per
category. KPCA -> 14 components kept
Corel: 90 categories, 100 images per category. 3D RGB
histogram of 125 dimensions.

Figure 5. (Top) These figures show the recall for Orl, Swedishand Corel databases for different graph Laplacians. (Bottom) Comparison
of Graph Laplacian with respect to SVM, Parzen and Graph-cuts.

5.2. Benchmarking

We evaluate the performance of our RF scheme using
the recall. LetZt be a random variable standing for the total
number of relevant images returned by the CBIR system un-
til iteration t, i.e., those belonging to the user’s “class of in-
terest”. The recall is defined asE(Zt) =

∑
r rP (Zt = r),

here the randomness and the expectation ofZt is taken
through different classes of interest. Figures (5, top) show
the recall for different graph Laplacians including the stan-
dard random walk (RW) and the robust random walk (R
RW) for different values ofα. The recall reported for the
three databases (ORL, Swedish and Corel) show clearly that
whenα ≪ 1 (in practiceα = .5 andα = .2), the em-
bedding generated using the graph Laplacian is robust and
captures better the topology of the data, and hence the per-
formance follow. Nevertheless, whenα → 0 (in practice
α = .01), the performances degrade as the underlying graph
Laplacian implements the most likely path which is more
noise-sensitive (see Section 3.2). In all the experiments,the
path lengthk is chosen large enough in order to make the
approach robust to noise. In practice and after cross valida-
tion we setk = 10.

5.3. Comparison

We compared our method to standard representative rel-
evance feedback tools including inductive methods: sup-
port vector machines (SVMs), Bayesian inference (based

on Parzen windows) and transductive one: Graph cuts. In
all these methods, we use the same display strategy (i.e.,
combined exploration exploitation). We train the SVMs
and Parzen classifiers using the triangular kernel as exten-
sive study in [10] showed that SVM based relevance feed-
back using the triangular kernel achieved far better results
than other kernels, so we limit our comparison to SVM
and Parzen using this kernel only. Again, for graph Lapla-
cian, the scale parameter of the Gaussian kernel is set as
σ = EX,X′∈Nm(X){‖X −X ′‖}, hereNm(X) denotes the
set ofm nearest neighbors ofX (in practicem = 10). The
results reported in Figure (5, bottom), show that in almost
all the cases, the recall performances of relevance feedback
(using graph-Laplacian) are better than SVMs, Parzen and
Graph cuts based RF. Clearly, the use of unlabeled data as a
part of transductive learning (in graph Laplacian and graph
cuts), makes it possible to improve the performance sub-
stantially. Furthermore, the embedding of the data through
graph Laplacian makes it possible to capture the topology
of the data, so learning the decision rule become easier.

6. Conclusion

We introduced in this work an original approach for rele-
vance feedback based on transductive learning using graph
Laplacian. This work demonstrates clearly that this semi
supervised learning is three-edged sword: it is effective in
order (1) to handle transductive learning (in contrast to in-
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Conclusion

Neighbourhood graph→ graph Laplacian→ transductive
learning→ image segmentation
Neighbourhood graph→ diffusion distance→ interactive
image search
Take care when choosing a graph Laplacian matrix

several possibilities
normalization of the similarities

Convergence results→ new interpretation existing
algorithms
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