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Outline

e Transductive learning by graph Laplacian
@ The transductive learning assumption
@ Convergence of the graph Laplacian
@ Transductive inference using the graph Laplacian

e Graph Laplacian transduction for computer vision
@ Image segmentation
@ Interactive image search
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The transductive learning assumption

Inductive, semi-supervised and transductive learning

Inductive learning
@ We observe (Xi, Y1),...,(Xn, Yn)

@ Question: For any new input x, what is the associated y?

Semi-supervised learning
@ We observe (X1, Y1),...,(Xn, Yn) and Xpiq, ..., Xntt
@ Question: For any new input x, what is the associated y?

| A\

Transductive learning

@ We observe (X1, Y1),...,(Xn, Yn) and Xpiq, ..., Xntt
@ Question: what are the outputs Y, 1,..., Yntt?
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The transductive learning assumption

The key semi-supervised and transductive learning
assumption

Key assumption

The decision boundary appears in a low density region of the
input space.
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Convergence of the graph Laplacian

Input data distribution

@ X1, Xo,... drawn i.i.d. from P(dx) = p(x)dVu(x)

@ V) : natural volume element

05
150 T

@ M c R? : unknown submanifold of dimension g < Q
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Convergence of the graph Laplacian

Laplace operator

@ If f: R — R twice differentiable:
Af=f"

o If f: RY — R twice differentiable:

Q
0?f
i=1 77

@ For M a submanifold of R9 and f : M — R twice
differentiable:

Af = div(grad f)

Conclusion
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Convergence of the graph Laplacian

The s-weighted Laplace-Beltrami operator

e M a submanifold of R@

e padensity on M

@ seR

o f: M — R twice differentiable:

LI
Agf = s div(p® gradf)

@ Main properties:
[ ) AO e A
ovf.g [ f(Asg) pSdVi = — [, (Vf,Vg) pSdVy

Problem

Given f: M — R, how to approximate (Asf)(x) by only using
the values of fat x, Xq,..., X, ?




Transductive learning by graph Laplacian Graph Laplacian transduction for computer vision Conclusion
0O0000@0000000000 0000000000000

Convergence of the graph Laplacian

Motivation

@ Clustering (Spielman & Teng, 1996, ...)
@ Dimensionality reduction (Belkin & Niyogi, 2008, ...)
@ Transductive learning (Belkin & Niyogi, 2004, ...)



Transductive learning by graph Laplacian Graph Laplacian transduction for computer vision Conclusion
O00000@000000000 0000000000000

Convergence of the graph Laplacian

Neighbourhood graph

@ k:R, — R, such that k(u) = 0 for u > 1 f %L

o k(||X; — X;||2/H?) : similarity measure between X; and X; for
the bandwith parameter h > 0

® d(X) = 3 7Lq k(11X — X;|[2/HP)

@ Kk(Xi, Xj) = %X(H;]ff)_ A = reweighting parameter

Definition

The neighbourhood graph:
o V={Xq,..., X}
o E={(X;,X):k(X;X) >0}
° w(Xi, Xj) = k(X;, X))
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Conclusion

Convergence of the graph Laplacian

Neighbourhood graph
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Convergence of the graph Laplacian

Extended neighbourhood graph

@ Set of vertices: V = {x, Xy,..., Xn}
@ Degree function: d(x) = >4 k(x, X))
@ Averaging operator: forany f: M — R,

(Af)(x) = D k(x, X)F(X)).
j=1

Conclusion
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Convergence of the graph Laplacian

Definition of the “random walk” graph Laplacian

@ Random walk: (A™f)(x) = % (f— LAf) (x)
@ Similar to:

f”(X) ~ 72f(x)+f(xh;h)+f(x+h)
- # (f(X) . f(x—h)-gf(x-i—h))

@ Let Xy = x and

. ( K(X;. X)) >
n
Zz:ok(xiaxﬁ) 0<ij<n

@ Tj>0and Y7, Tj=1= T is the transition matrix

1

(A™F)(x) = 2 (f(x) — Ew, wp=xf(W1)) .
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Convergence of the graph Laplacian
Definitions
(rw) 1 1
randomwalk (A"™f)(x) = 2 f— aAf (x)

q\2A—1
unnormalized  (AWf)(x) = (nhh)z(df — Af) (x)

normalized  (AMF)(x) = f721d()() <d\ffd — A(\/fa)) (x)

(@)@
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Convergence of the graph Laplacian

Convergence properties

Graph Laplacian convergence (Hein, Audibert & von Luxburg, 2005)

Let s = 2(1 — A). Under reasonable conditions on the submanifold M,
the kernel k and the density p:

@ if h — 0 and nh9*2/log n — oo,
random walk: nlim (A™F)(x) x —(Asf)(X) as.

unnormalized:  lim (AYf)(x) «x —p(x)'72* (Asf)(x) as.

n—oo

@ if h — 0 and nh9*+4/logn — oo,

normalized:  lim (A™Mf)(x) o —p(x)%_)‘As(f)(X) a.s.
n—oo 2 A
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Convergence of the graph Laplacian

Convergence properties: discussion

@ The graph Laplacian converges to the true Laplacian (up to
some terms)!

@ All limits agree for A = 1/2

@ All limits agree for uniform density

@ In other cases, the limits are different!

@ The data-dependent modification of the edge weights
allows to control the influence of the density

o Dependence on g of (AMf)(x) = (M1 (df - Af) (x)
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Transductive inference using the graph Laplacian

A way of using the key assumption

@ Recalling the key assumption: The input density p at the
decision boundary is small

@ Incorporation of the prior knowledge:

min ¢ 3 [V~ fOOR + Jiy IVF12p*dVin,

1<i<n

<:>mfin c > [Yi— (X)) — [y f x (Asf)p*dVu,

1<i<n

& minc 3 [Y— 0P - 7 DI AOAHX)PS (X),

1<i<n
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Transductive inference using the graph Laplacian

A way of using the key assumption

@ Recalling the key assumption: The input density p at the
decision boundary is small

@ Incorporation of the prior knowledge:
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<:>mfin c > [Yi— (X)) — [y f x (Asf)p*dVu,
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<gwncz[Yfﬂn—quma)Aﬂmw1mx

1<i<n
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Transductive inference using the graph Laplacian

Approximating the graph Laplacian

@ Now we have seen that AWf ~» —pS—1 Asf. Therefore:

e mine 3 [Y; - fG)P - 5 DI AX)AVAX),

- n+t
1<i<n

o Besides we have ((AYf)(X);;cp,; x (D — W)F, where

e D is the diagonal matrix with D; = d(X;)
e W is the weight matrix with W = k(X, X))
e F = (f(Xi))1<i<n+t is the predicted output vector
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Transductive inference using the graph Laplacian

A linear system to solve

o LetY=(Yy,...,Y,0,...,007 ¢ R!
@ Let C = Diag(c,...,c,0,...,0) € R(+Dx(n+)

@ The predicted output associated to the test points are the
last m elements of the vector F solving

in (F—Y)TC(F-Y)+FT(D-W)F
(min ( )" C( )+ F( )F,

@ By differentiation, the solutions satisfy
(D-W+C)F=CY

@ For the unlabeled input X;, output sgn(F;)
@ 3 parameters: h, ¢, and s
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Image segmentation

Image segmentation

@ Partitioning an image into “meaningful” regions

@ A key task of computer vision (medical imaging,
photo/painting softwares,...)

@ An ill-posed problem = utilize user-supplied seeds
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Image segmentation
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Image segmentation

Algorithm (1/2)

(Duchenne, Audibert, Keriven, Ponce, Segonne, 2008)

Parameters
@s>0
@ o4 > 0: scale of geometric neighbourhoods
@ 0. > 0: scale of chromatic neighbourhoods
@ m € N: size of the local patch

@ C(i) =the RGB levels of a square patch of size 2m + 1
around the pixel .
@ z(i) = the geometric position (row+column) of the pixel i

y =202 160-Chi2
k(/,j) —e 20'g 20%
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Image segmentation

Algorithm  (2/2)

@ Compute the matrix D and W:

N ((3) N
V= GaagreE =2

@ For the training pixel /, put Y; = —1 or +1 depending on
which zone the pixel i belongs to

@ Solve the large sparse linear system associated to

min  F(D— W)F
FeRM!
viel[t,nllFi=Y;

@ Output for the pixel j the label sgn(F;)
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Image segmentation

Link to previous approaches

@ Ourapproach: ~ min FTAWF with AW = D — W
vielltnllFi=Y,

@ Graphcut:  min FTAWF
Fe{—1;+1}t
Vie[[1,n]Fi=Y;

For s = 2, Boykov et al. (2001,2006), Blake et al. (2006)
@ Normalized cut: s=1 — AW is the matrix of the

eigenvalue problem used in (Shi & Malik, 2000)
o Guanand Qiu (2006):  min  FTAMWF,

FeRM!
vie[[1,n]Fi=Y;
I IVEPpsdvy — # [y, |AfPpSdViy

@ Grady et al. (2004,2006): s = 2 (motivated by

graph-theoretical electrical potential)
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Image segmentation

Some experimental results
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Image segmentation

Some experimental results

@ Quantatively:
5.4% of the pixel of the grey band are misclassified in
average
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Interactive image search

Principle
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Interactive image search

Principle & Evaluation

@ Principle
(1) Display initial images
(2) Ask the user for the interesting/non-interesting ones
(3) Display new images and goto (2)

@ Evaluation: recall vs number of displayed images
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Interactive image search

Random walks

@ W weight matrix: W;; = k(X;, Xj), i,j € [[1, n]]

@ D diagonal matrix: D; ; = Z/- Wi,

@ P = D 'W s a transition matrix

@ (A,%1),...,(A\n,¥n) eigenvalues and eigenvectors of P

@ Xi — &(Xi) = (¥1,is- -+, ¥n,i)

@ Diffusion distance:

Daa(Xi, %) = 1PCII) = PCIDIR. = 3 M2 [6e(X)) — 6e(X))]°
=1

&

L
3" 22[60(X5) — de(X))?
=1
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Interactive image search

Random walks

@ P, = PKXis a (k-step) transition matrix

Pe(jliy = > P(1]i)P(L2]tr) - - P(jlek—1)
L5l —1

@ k-step diffusion distance:

Dit(Xi, X)) = 1PeCC1i) = PeCLIZ = 3 22K [ou(Xi) — de(X)))?
=1

Q

L
S [6u(X) — du(X)]?
=1
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Interactive image search

Exploitation-exploration

@ half exploitation and half exploration for the new display
@ half of the images are drawn according to

p(X;) min Dy, m(Xi, X))

i positively labeled

@ half of the images are drawn according to

p(X;) max Dk m(Xi, X))

i positively labeled
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Interactive image search

Experimental results

@ Olivetti: 40 persons, 10 faces per person. Histogram
equalization, KPCA -> 20 components kept

@ Swedish: 15 categories of leaf silhouettes, 75 leafs per
category. KPCA -> 14 components kept

@ Corel: 90 categories, 100 images per category. 3D RGB
histogram of 125 dimensions.

~- -G Laplacian _ 70~ * -G Laplacian T2 G Laplacian
SVM g = SVM s SVM
gf| o Parzen o 60| o Parzen Lok gof| o Parzen
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Conclusion

@ Neighbourhood graph — graph Laplacian — transductive
learning — image segmentation
@ Neighbourhood graph — diffusion distance — interactive
image search
@ Take care when choosing a graph Laplacian matrix
o several possibilities
e normalization of the similarities
@ Convergence results — new interpretation existing
algorithms
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