Exploiting cluster-structure to predict the labeling of a graph

New Challenges in Theoretical Machine Learning: Learning with Data-dependent Concept Spaces

Mark Herbster

University College London
Department of Computer Science

13 December, 2008

Overview

- Give perceptron-like algorithm for graph label prediction
- Improve on Perceptron bound when cluster-structure

"Default" Assumption

"Cluster" Assumption

Perceptron Bound (Novikoff)

Theorem [Novikoff]:

Given a sequence $\{(\boldsymbol{x}_t, y_t)\}_{t=1}^\ell \subseteq \mathcal{H} \times \{-1, 1\}$ then the mistakes of the perceptron are bounded by

$$M \leq \|\boldsymbol{u}\|^2 R$$

with $R = \max_{t}(\|\boldsymbol{x}_{t}\|^{2})$ for all $\boldsymbol{u} \in \mathcal{H}$ such that

$$\langle \boldsymbol{u}, \boldsymbol{x}_t \rangle y_t \geq 1$$

for
$$t = 1, \ldots, \ell$$
.

Input space *X* of radius *R* with cover number $\mathcal{N}(X, \rho) = 7$.

- Bounds to be dependent on structure of input space *X*.
- Novikoff is only dependent on X through radius R.
- Expectation is that a typical ambient input space is only sparsely populated (cf manifold/cluster hypotheses).
- Pounce will depend on the cover of X.
- In particular the number of balls $\mathcal{N}(X, \rho)$ of diameter ρ .

Input space *X* of radius *R* with cover number $\mathcal{N}(X, \rho) = 7$.

- Bounds to be dependent on structure of input space *X*.
- Novikoff is only dependent on X through radius R.
- Expectation is that a typical ambient input space is only sparsely populated (cf manifold/cluster hypotheses).
- Pounce will depend on the cover of X.
- In particular the number of balls $\mathcal{N}(X, \rho)$ of diameter ρ .

Input space *X* of radius *R* with cover number $\mathcal{N}(X, \rho) = 7$.

- Bounds to be dependent on structure of input space X.
- Novikoff is only dependent on X through radius R.
- Expectation is that a typical ambient input space is only sparsely populated (cf manifold/cluster hypotheses).
- Pounce will depend on the cover of X.
- In particular the number of balls $\mathcal{N}(X, \rho)$ of diameter ρ

Input space *X* of radius *R* with cover number $\mathcal{N}(X, \rho) = 7$.

- Bounds to be dependent on structure of input space X.
- Novikoff is only dependent on X through radius R.
- Expectation is that a typical ambient input space is only sparsely populated (cf manifold/cluster hypotheses).
- Pounce will depend on the cover of *X*.
- In particular the number of balls $\mathcal{N}(X, \rho)$ of diameter ρ

Input space *X* of radius *R* with cover number $\mathcal{N}(X, \rho) = 7$.

- Bounds to be dependent on structure of input space X.
- Novikoff is only dependent on X through radius R.
- Expectation is that a typical ambient input space is only sparsely populated (cf manifold/cluster hypotheses).
- Pounce will depend on the cover of X.
- In particular the number of balls $\mathcal{N}(X, \rho)$ of diameter ρ .

Pounce Bound

Theorem

The mistakes M of POUNCE are bounded by

$$M \leq \mathcal{N}(X, \rho) + \|\mathbf{u}\|^2 \rho + 1$$
,

for all $0 < \rho$, and for all $\boldsymbol{u} \in \mathbb{R}^n$ such that

$$\boldsymbol{u}(i_t)y_t \geq 1$$

for all $t = 1, \dots, \ell$.

• **Definition:** $\mathcal{N}(X, \rho)$ is the minimum number of balls of squared diameter ρ that cover X.

