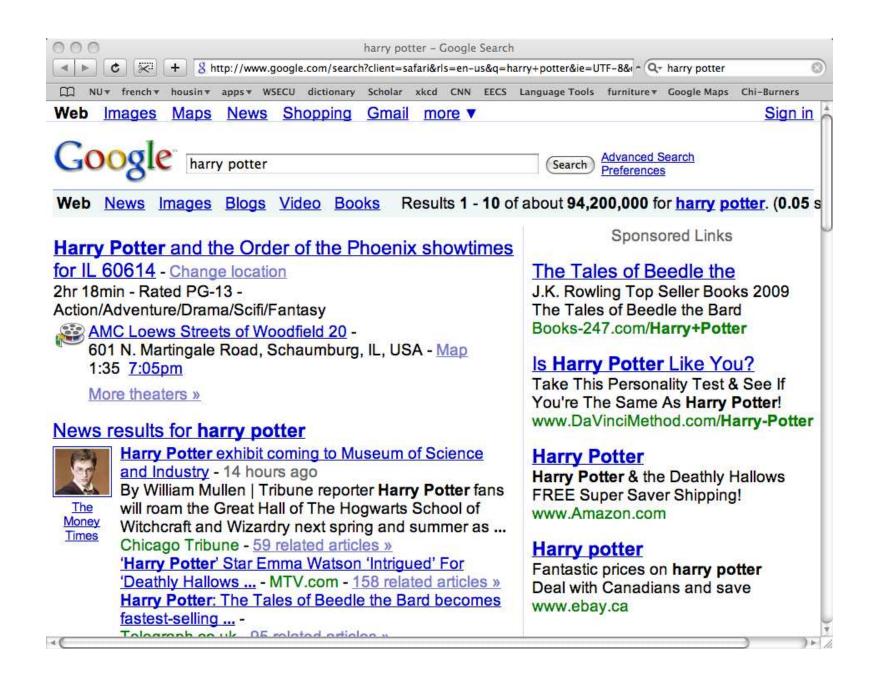
Machine Learning, Market Design, and Advertising

> Jason D. Hartline Northwestern University

December 13, 2008



Definition: Generalized Second Price (GSP) auction

- advertisers bid for keywords in advance.
- on query,
 - find all bids that *match* query.
 - rank by bid.
 - if ad clicked, charge next highest bid.

(can also scale bids by "quality" or click-through rate)

Part I: Beyond GSP.

- Advertising market overview.
- Short-comings of GSP.
- Proposal: add pre-sale market.
- Many connections to ML.

Part II: Machine learning and market design.

Part I: Beyond GSP.

Online/Search Advertising Markets _____

Online/Search Advertising Markets _____

- search engine
- users
- advertisers

Online/Search Advertising Markets _____

- search engine (e.g., wants to maximize profit = payments costs)
- users
- advertisers

- *search engine* (e.g., wants to maximize profit = payments costs)
- users (e.g., want to max search/ad relevance, min search time)
- advertisers

- *search engine* (e.g., wants to maximize profit = payments costs)
- *users* (e.g., want to max search/ad relevance, min search time)
- advertisers (e.g., wants max value from ads payments cost of optimizing campaign, subject to budget)

- *search engine* (e.g., wants to maximize profit = payments costs)
- users (e.g., want to max search/ad relevance, min search time)
- advertisers (e.g., wants max value from ads payments cost of optimizing campaign, subject to budget)

Market Design Objectives:

- *search engine* (e.g., wants to maximize profit = payments costs)
- users (e.g., want to max search/ad relevance, min search time)
- advertisers (e.g., wants max value from ads payments cost of optimizing campaign, subject to budget)

Market Design Objectives:

- maximize welfare = user welfare + advertiser welfare search engine costs.
- *maximize profit* = payments costs.

- *search engine* (e.g., wants to maximize profit = payments costs)
- users (e.g., want to max search/ad relevance, min search time)
- advertisers (e.g., wants max value from ads payments cost of optimizing campaign, subject to budget)

Market Design Objectives:

- maximize welfare = user welfare + advertiser welfare search engine costs.
- maximize profit = payments costs.
 (short-term profit maximization is probably short-sighted)

Properties of GSP

Recall Definition: Generalized Second Price (GSP) auction

- advertisers bid for keywords in advance.
- on query,
 - find all bids that match query.
 - rank by bid.
 - if ad clicked, charge next highest bid.

Properties:

- *low-level bidding language:* bids for keywords.
- *decentralized:* advertisers are optimizers
- *local:* advertisers adapt bids to market conditions.
- *diffuse info:* advertisers know demand, engine knows supply.
- online greedy: allocation ignores future supply and past allocation

Evidence of GSP Non-optimality:

- search engine marketers are necessary (i.e., significant bid cost).
- pervasive use of *broadmatch*.
- Many advertisers do not actively change bids.
- Budgets often *binding* (advertisers could bid less and get more).

Advantage: easy to specify and optimize a single bid. (i.e., broadmatch has low bid-maintenance cost)

Advantage: easy to specify and optimize a single bid. (i.e., broadmatch has low bid-maintenance cost)

Disadvantage: not optimal for advertisers.

(absent bid-maintenance cost, better to submit different keyword bids)

- clicks for different keywords worth different amounts.
- demand for different keywords is different.
- supply of different keywords is different.

Advantage: easy to specify and optimize a single bid. (i.e., broadmatch has low bid-maintenance cost)

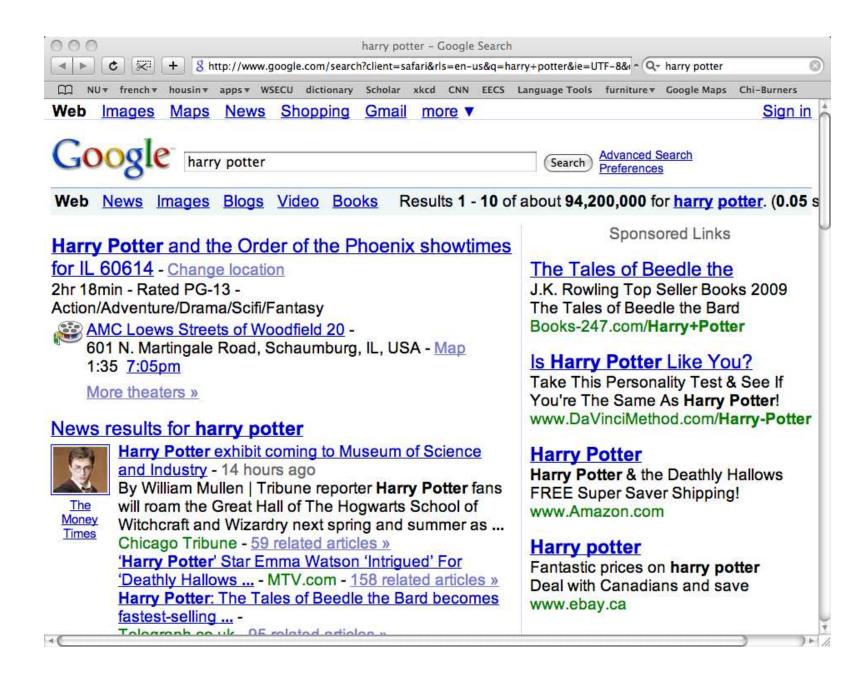
Disadvantage: not optimal for advertisers.

(absent bid-maintenance cost, better to submit different keyword bids)

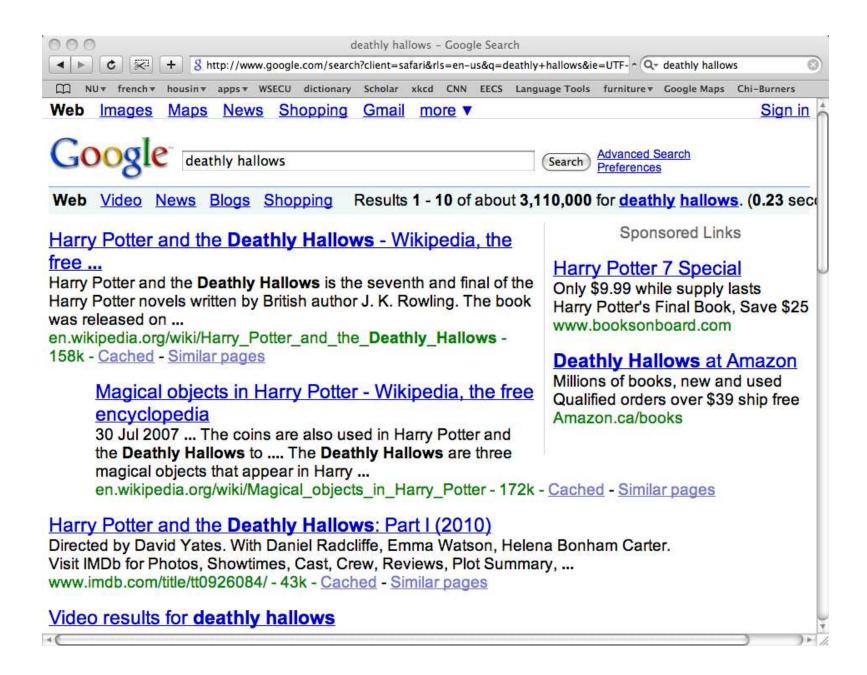
- clicks for different keywords worth different amounts.
- demand for different keywords is different.
- supply of different keywords is different.

Note: better to have expressive bids and low bid-maintenance cost.

Example: "Harry Potter" ____



Example: "Deathly Hallows" ____



Broadmatch Discussion -

Discussion:

- Compare Amazon's value-per-click: Probably "Harry Potter" < "Deathly Hallows"
- Compare advertiser competition: Probably "Harry Potter" > "Deathly Hallows"
- Compare keyword supply: Probably "Harry Potter" > "Deathly Hallows"

Broadmatch Discussion -

Discussion:

- Compare Amazon's value-per-click: Probably "Harry Potter" < "Deathly Hallows"
- Compare advertiser competition: Probably "Harry Potter" > "Deathly Hallows"
- Compare keyword supply: Probably "Harry Potter" > "Deathly Hallows"

Conclusion: Amazon should bid differently for "H.P." vs "D.H."

Broadmatch Discussion _

Discussion:

- Compare Amazon's value-per-click: Probably "Harry Potter" < "Deathly Hallows"
- Compare advertiser competition: Probably "Harry Potter" > "Deathly Hallows"
- Compare keyword supply: Probably "Harry Potter" > "Deathly Hallows"

Conclusion: Amazon should bid differently for "H.P." vs "D.H."

Suggestion:

 Use "conversion tracking" to learn *conversion rates*. (compatible with GSP)

Broadmatch Discussion _

Discussion:

- Compare Amazon's value-per-click: Probably "Harry Potter" < "Deathly Hallows"
- Compare advertiser competition: Probably "Harry Potter" > "Deathly Hallows"
- Compare keyword supply: Probably "Harry Potter" > "Deathly Hallows"

Conclusion: Amazon should bid differently for "H.P." vs "D.H."

Suggestion:

- Use "conversion tracking" to learn *conversion rates*. (compatible with GSP)
- Use auction where advertisers bid *true value-per-click*. (incompatible with GSP)

- 1. complex advertiser and user preferences.
- 2. online supply.
- 3. large tail.
- 4. incentives (esp. with budgets)

- 1. complex advertiser and user preferences.
- 2. online supply.
- 3. large tail.
- 4. incentives (esp. with budgets)

Tasks:

- 1. learn preferences.
- 2. predict future supply
- 3. cluster tail.
- 4. pricing based mech. design.

- 1. complex advertiser and user preferences.
- 2. online supply.
- 3. large tail.
- 4. incentives (esp. with budgets)

Tasks:

- 1. learn preferences.
- 2. predict future supply
- 3. cluster tail.
- 4. pricing based mech. design.

Note: These do not fit into GSP model.

- 1. complex advertiser and user preferences.
- 2. online supply.
- 3. large tail.
- 4. incentives (esp. with budgets)

Tasks:

- 1. learn preferences.
- 2. predict future supply
- 3. cluster tail.
- 4. pricing based mech. design.

Note: These do not fit into GSP model.

What would be a better mechanism?

Combine pre-sale (offline) mechanism with spot (online) mech.

Combine pre-sale (offline) mechanism with spot (online) mech.

Almost all mature markets have pre-sales!

Combine pre-sale (offline) mechanism with spot (online) mech.

Almost all mature markets have pre-sales!

Related Examples:

- *timber*. 20% spot auction, 80% pre-sale (prices from spot)
- *pollution allowance*: short and medium-term markets.
- electricity markets: short (≤ 1 day), medium (1–3 years), long-term (4–20 years) markets.

Combine pre-sale (offline) mechanism with spot (online) mech.

Almost all mature markets have pre-sales!

Related Examples:

- *timber*. 20% spot auction, 80% pre-sale (prices from spot)
- *pollution allowance*: short and medium-term markets.
- electricity markets: short (≤ 1 day), medium (1–3 years), long-term (4–20 years) markets.

How should we design the advertising pre-sale market?

Part II: Machine learning and market design.

Setting:

- can estimate supply.
- can estimate preferences.
 (if advertisers provide automated reports)
- can cluster tail.

Market Design Goal:

- incentivize advertisers to provide automated reports.
- optimize objective.

Definition: an *offer* is a "menu" that maps *bundles of goods* to *prices*.

Definition: an offer is a "menu" that maps bundles of goods to prices.

Note: *advertiser preference* and *offer* induce a *demand* and *payment*.

- demand: sell advertiser their most preferred bundle. (at given prices)
- *payment*: charge bundle's price.

Definition: an offer is a "menu" that maps bundles of goods to prices.

Note: *advertiser preference* and *offer* induce a *demand* and *payment*.

- demand: sell advertiser their most preferred bundle. (at given prices)
- *payment*: charge bundle's price.

Note: for advertiser to get most preferred bundle, search engine needs to have accurate model of advertiser preferences.

Definition: an offer is a "menu" that maps bundles of goods to prices.

Note: *advertiser preference* and *offer* induce a *demand* and *payment*.

- demand: sell advertiser their most preferred bundle. (at given prices)
- *payment*: charge bundle's price.

Note: for advertiser to get most preferred bundle, search engine needs to have accurate model of advertiser preferences.

Claim: For any fixed offer, reporting true preferences is optimal.

Definition: an offer is a "menu" that maps bundles of goods to prices.

Note: *advertiser preference* and *offer* induce a *demand* and *payment*.

- demand: sell advertiser their most preferred bundle. (at given prices)
- *payment*: charge bundle's price.

Note: for advertiser to get most preferred bundle, search engine needs to have accurate model of advertiser preferences.

Claim: For any fixed offer, reporting true preferences is optimal.

Advertiser may as well opt-in to automated resports.

Definition: an offer is a "menu" that maps bundles of goods to prices.

Note: *advertiser preference* and *offer* induce a *demand* and *payment*.

- demand: sell advertiser their most preferred bundle. (at given prices)
- *payment*: charge bundle's price.

Note: for advertiser to get most preferred bundle, search engine needs to have accurate model of advertiser preferences.

Claim: For any fixed offer, reporting true preferences is optimal.

Advertiser may as well opt-in to automated resports.

Claim: many justifications for pricing-based approach.

• make the same offer to all advertisers,

- make the same offer to all advertisers,
- but supply of keyword impressions is limited,

- make the same offer to all advertisers,
- but supply of keyword impressions is limited,
- so offer may result in over-demanded keywords.

- make the same offer to all advertisers,
- but supply of keyword impressions is limited,
- so offer may result in over-demanded keywords.

Solution: *random priority*: order advertisers at random, make offer "while supplies last".

- make the same offer to all advertisers,
- but supply of keyword impressions is limited,
- so offer may result in over-demanded keywords.

Solution: *random priority*: order advertisers at random, make offer "while supplies last".

Result: Well defined expected performance of any offer.

- make the same offer to all advertisers,
- but supply of keyword impressions is limited,
- so offer may result in over-demanded keywords.

Solution: *random priority*: order advertisers at random, make offer "while supplies last".

Result: Well defined expected performance of any offer.

Natural Objective: for class of offers G, find offer that maximizes objective payoff. (e.g., social welfare, profit, etc.)

Optimization Challenge: given preferences and supplies, compute offer with highest performance.

Optimization Challenge: given preferences and supplies, compute offer with highest performance.

- intractable for general preferences.
- focus on properties of advertising enable tractability.

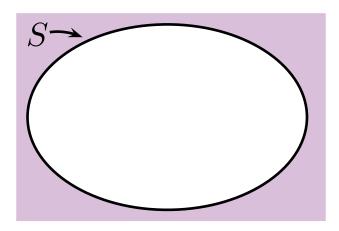
Optimization Challenge: given preferences and supplies, compute offer with highest performance.

- intractable for general preferences.
- focus on properties of advertising enable tractability.

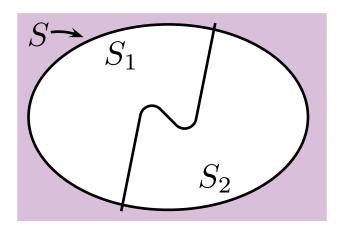
Incentive Challenge: advertisers can manipulate this optimal offer.

Can we design mech. where it is optimal to report true preferences?

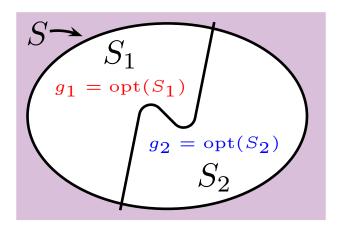
- 1. Randomly partition bidders into two sets, S_1 and S_2 .
- 2. compute optimal offers, g_1 and g_2 , for each set.
- 3. Offer g_1 to S_2 and g_2 to S_1 .



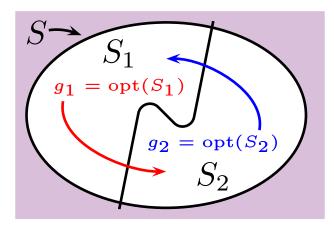
- 1. Randomly partition bidders into two sets, S_1 and S_2 .
- 2. compute optimal offers, g_1 and g_2 , for each set.
- 3. Offer g_1 to S_2 and g_2 to S_1 .



- 1. Randomly partition bidders into two sets, S_1 and S_2 .
- 2. compute optimal offers, g_1 and g_2 , for each set.
- 3. Offer g_1 to S_2 and g_2 to S_1 .

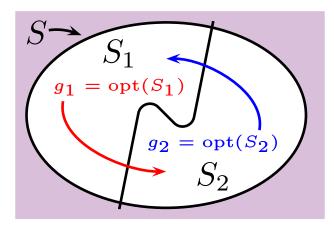


- 1. Randomly partition bidders into two sets, S_1 and S_2 .
- 2. compute optimal offers, g_1 and g_2 , for each set.
- 3. Offer g_1 to S_2 and g_2 to S_1 .



Random Sampling Optimal Offer Auction, $RSOO_{\mathcal{G}}$

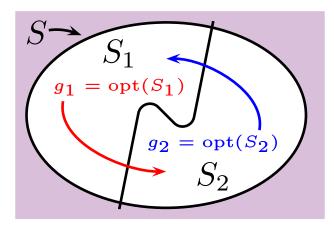
- 1. Randomly partition bidders into two sets, S_1 and S_2 .
- 2. compute optimal offers, g_1 and g_2 , for each set.
- 3. Offer g_1 to S_2 and g_2 to S_1 .



Claim: In RSOO_{\mathcal{G}}, reporting true preferences is optimal.

Random Sampling Optimal Offer Auction, $RSOO_{\mathcal{G}}$

- 1. Randomly partition bidders into two sets, S_1 and S_2 .
- 2. compute optimal offers, g_1 and g_2 , for each set.
- 3. Offer g_1 to S_2 and g_2 to S_1 .

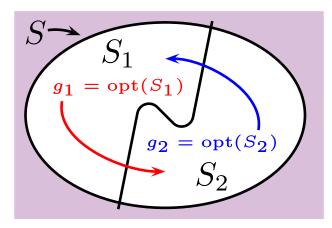


Claim: In RSOO_G, reporting true preferences is optimal.

Question: when does $RSOO_{\mathcal{G}}$ perform well?

Random Sampling Optimal Offer Auction, $RSOO_{\mathcal{G}}$

- 1. Randomly partition bidders into two sets, S_1 and S_2 .
- 2. compute optimal offers, g_1 and g_2 , for each set.
- 3. Offer g_1 to S_2 and g_2 to S_1 .



Claim: In RSOO_G, reporting true preferences is optimal.

Question: when does $RSOO_{\mathcal{G}}$ perform well?

Note: close connection to sample complexity and machine learning.

Theorem: (Approximately) For any linear objective (e.g., welfare or profit), class of offers \mathcal{G} , and ϵ ;

$$\mathbf{E}[\mathsf{RSOO}_{\mathcal{G}}] \ge (1 - \epsilon) \operatorname{OPT}_{\mathcal{G}}$$

as long as

$$\operatorname{OPT}_{\mathcal{G}} \ge \frac{h}{\epsilon^2} \log \frac{|\mathcal{G}|}{\epsilon}$$

and h is upper bound on payoff from any agent.

Theorem: (Approximately) For any linear objective (e.g., welfare or profit), class of offers \mathcal{G} , and ϵ ;

$$\mathbf{E}[\mathsf{RSOO}_{\mathcal{G}}] \ge (1 - \epsilon) \operatorname{OPT}_{\mathcal{G}}$$

as long as

$$\operatorname{OPT}_{\mathcal{G}} \ge \frac{h}{\epsilon^2} \log \frac{|\mathcal{G}|}{\epsilon}$$

and h is upper bound on payoff from any agent.

Interpretation: convergence rate is $O(h \log |\mathcal{G}|)$.

Example: Selling tee shirts.

- Bidders with valuations in [1, h] for a tee shirt.
- Reasonable offers: $\mathcal{G} = \{ \text{price } 2^i \text{ for } i \in \{1, \dots, \log h\} \}.$
- Convergence Rate: $O(h \log |\mathcal{G}|) = O(h \log \log h)$

Recall Interpretation: convergence rate is $O(h \log |\mathcal{G}|)$.

Extensions:

- use *covering* arguments to improve bounds.
- use *structural-risk-minimization* to penalize for "complex" offers.

Selected References:

- Pricing Algorithms: E.g., [Gurusuami et al., 2005]
- Unlimited Supply: [Balcan et al., 2005]
- Limited Supply: [Balcan et al., unpublished]

Approach 2: Differential Privacy _____

Definition: A function f satisfies ϵ -differential privacy if for S and S' differing in one coordinate and set R in range of f,

 $\Pr[f(S) \in R] \le e^\epsilon \times \Pr[f(S') \in R]$

Approach 2: Differential Privacy

Definition: A function f satisfies ϵ -differential privacy if for S and S' differing in one coordinate and set R in range of f,

$$\Pr[f(S) \in R] \le e^{\epsilon} \times \Pr[f(S') \in R]$$

Note: if near optimal offer can be computed with ϵ -diff. privacy, advertisers cannot manipulate it.

Approach 2: Differential Privacy _____

Definition: A function f satisfies ϵ -differential privacy if for S and S' differing in one coordinate and set R in range of f,

$$\Pr[f(S) \in R] \le e^{\epsilon} \times \Pr[f(S') \in R]$$

Note: if near optimal offer can be computed with ϵ -diff. privacy, advertisers cannot manipulate it.

Comment: in fact, perhaps all services that use private data should satisfy ϵ -differential privacy.

Approach 2: Differential Privacy

Definition: A function f satisfies ϵ -differential privacy if for S and S' differing in one coordinate and set R in range of f,

$$\Pr[f(S) \in R] \le e^\epsilon \times \Pr[f(S') \in R]$$

Note: if near optimal offer can be computed with ϵ -diff. privacy, advertisers cannot manipulate it.

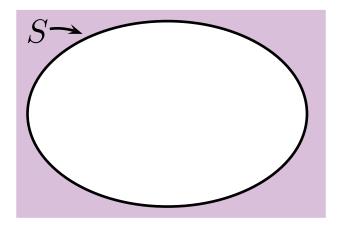
Comment: in fact, perhaps all services that use private data should satisfy ϵ -differential privacy.

Selected References:

- Differential Privacy: [Dwork, 2006]
- Differential Privacy Auction: [McSherry and Talwar, 2007]

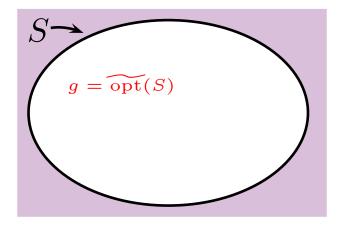
Privacy Preserving Optimal Offer Auction, $DPOO_{\mathcal{G}}$

- 1. Compute approximately optimal offer g with ϵ -diff. privacy.
- 2. Offer g to all advertisers.



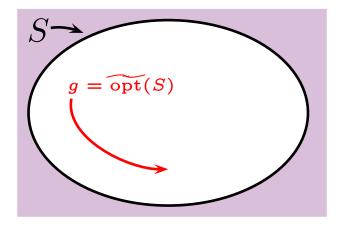
Privacy Preserving Optimal Offer Auction, $DPOO_{\mathcal{G}}$

- 1. Compute approximately optimal offer g with ϵ -diff. privacy.
- 2. Offer g to all advertisers.



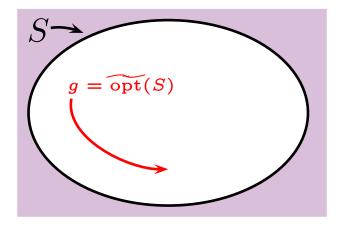
Privacy Preserving Optimal Offer Auction, $DPOO_{\mathcal{G}}$

- 1. Compute approximately optimal offer g with ϵ -diff. privacy.
- 2. Offer g to all advertisers.



Privacy Preserving Optimal Offer Auction, $DPOO_{\mathcal{G}}$

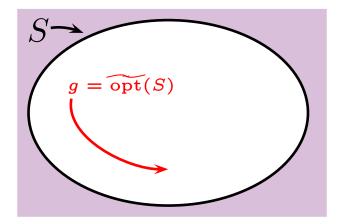
- 1. Compute approximately optimal offer g with ϵ -diff. privacy.
- 2. Offer g to all advertisers.



Claim: DPOO_{\mathcal{G}} is has near optimal performance.

Privacy Preserving Optimal Offer Auction, $DPOO_{\mathcal{G}}$

- 1. Compute approximately optimal offer g with ϵ -diff. privacy.
- 2. Offer g to all advertisers.

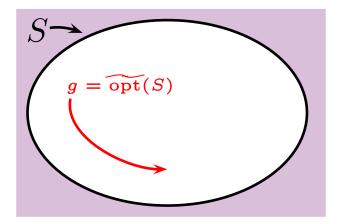


Claim: DPOO_{\mathcal{G}} is has near optimal performance.

Claim: With high probability in $DPOO_{\mathcal{G}}$, reporting true preferences is optimal.

Privacy Preserving Optimal Offer Auction, $DPOO_{\mathcal{G}}$

- 1. Compute approximately optimal offer g with ϵ -diff. privacy.
- 2. Offer g to all advertisers.



Claim: DPOO $_{\mathcal{G}}$ is has near optimal performance.

Claim: With high probability in DPOO_{\mathcal{G}}, reporting true preferences is optimal.

Note: "high probability" is as $OPT \gg h \log |\mathcal{G}|$.

- 1. GSP unlikely to optimize desired objectives.
- 2. ML can significantly help advertising market design.
 - predict supply.
 - learn preferences.
 - cluster tail.
 - pricing-based mechanisms.
- 3. advertising markets need pre-sale market.
- 4. pricing-based mechanisms may be right way to go.