
December 12th, 08 NIPS Beyond Search 1

Scalable Collaborative Filtering Scalable Collaborative Filtering 
for Mining Social Networksfor Mining Social Networks

Edward ChangEdward Chang
Google Research, BeijingGoogle Research, Beijing
http://infolab.stanford.edu/~echang/



December 12th, 08 NIPS Beyond Search 2

Collaborators
• Prof. Chih-Jen Lin (NTU)
• Hongjie Bai (Google)
• Wen-Yen Chen (UCSB)
• Jon Chu (MIT)
• Haoyuan Li (PKU)
• Yangqiu Song (Tsinghua)
• Matt Stanton (CMU)
• Yi Wang (Google)
• Dong Zhang (Google)
• Kaihua Zhu (Google)
• Confucius Team led by Jim Deng (Google Beijing)
• OpenSocial Team led by David Glazer (Google MTV)



December 12th, 08 NIPS Beyond Search 3

Confucius Growth

Confucius, a Q&A System

Machine 
Learning
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OpenSocial

675M 
users
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Web 2.0 --- Web with People
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Confucius, a Q&A system
• Allowing people to ask questions for 

information that cannot be found by 
Web search
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Query: What are must-see attractions at Yellowstone
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Query: What are must-see attractions at Yellowstone
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Query: What are must-see attractions at Yosemite
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Query: What are must-see attractions at Beijing

Hotel ads
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Key ML Subroutines of Confucius

Trigger a question session during search
Given a question, provide labels for easy organization
Given a question, find similar questions and their answers
Evaluate user credentials in a domain sensitive way
Given a question, route it to domain experts
Evaluate quality of answers to a question
Machine-generated answers
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Naive User Evaluation

Point system based on hand-crafted rules:
– registration +100 points

– each time login +5 points

– ask one question +bonus points

– ask one question +2 points

– vote on one answer +1 points

– best answers +bonus points

– …
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Shortcomings
• Easily Spammed

– Mutual enforcement, answer “friends”
questions

1,000 IDs of the same person
– Copy & paste others’ answers
– Advertising posts

• Freshness
– User's recent activities are not emphasized
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Link-based User Credential Ranking: HITS

QA pairs User Relation
Ranking user using HITS*

* HITS  is based on Zoltan et al, Questioning Yahoo Answers. QAWeb, WWW2008
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Q&A/Blog/BBS Search

• Lack of links
• Links can be easily spammed
• User credential can help ranking
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Data Mining 
Impact & Opportunities

Confucius Growth

675M 
users
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Web 2.0 --- Web with People
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+ Social Platforms
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What users are interested in?

Open Social

1

2

3

Profiles (who I am)

Friends (who I know)

Activities (what I do) 

4

Stuff (what I have)
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Open Social APIs

Open Social

1
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3

Profiles (who I am)

Friends (who I know)

Activities (what I do) 

4

Stuff (what I have)



December 12th, 08 NIPS Beyond Search 26



December 12th, 08 NIPS Beyond Search 27



December 12th, 08 NIPS Beyond Search 28



December 12th, 08 NIPS Beyond Search 29



December 12th, 08 NIPS Beyond Search 30

Personalized Search Example

• Infer relevance through social networks

• Query “fuji” can return
– Fuji mountain
– Fuji apples
– Fuji cameras
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Personalized Recommendation
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Recommendation Systems

• Photo/Video Recommendation
• Friend Recommendation
• Community/Forum Recommendation
• Ads Matching

• Performance Requirements
– Scalability, scalability, scalability
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Outline
• Applications

– Confucius
– OpenSocial

• Key Subroutines for Mining Massive SNS
– Clustering [ECML 08]
– Frequent Itemset Mining [ACM RS 08]
– Combinational Collaborative Filtering [KDD 08]

• with PLSA
• with LDA

– Support Vector Machines [NIPS 07]

• Distributed Computing Perspectives
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Outline
• Applications

– Confucius
– OpenSocial

• Key Subroutines
– Clustering [ECML 08]
– Frequent Itemset Mining (FIM)
– Combinational Collaborative Filtering

• with PLSA
• with LDA

– Support Vector Machines
• Distributed Computing Perspectives
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Task: Targeting Ads at SNS Users
Users

Ads
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Mining Profiles, Friends & Activities 
for Relevance
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Consider also User Influence
• Advertisers consider 

users who are
– Relevant
– Influential

• SNS Influence Analysis
– Centrality
– Credential
– Activeness
– etc.
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Outline
• Emerging Applications

– Social networks
– Personalized Information retrieval

• Key Subroutines
– Clustering [ECML 08]

– Frequent Itemset Mining (FIM)
– Combinational Collaborative Filtering

• with PLSA
• with LDA

– Support Vector Machines
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Photos/Videos

Based on membership so far, 
and memberships of others

Predict further membership

Collaborative Filtering
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Based on partially 
observed matrix

Predict unobserved entries

I. Will user i enjoy photo j?

II. Will user i be interesting to user j?

III. Will photo i be related to photo j?

U
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Some Queries
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FIM-based Recommendation
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FIM Preliminaries
• Observation 1: If an item A is not frequent, any pattern 

contains A won’t be frequent [R. Agrawal]
use a threshold to eliminate infrequent items 

{A}  {A,B}
• Observation 2: Patterns containing A are subsets of (or 

found from) transactions containing A [J. Han]
divide-and-conquer: select transactions containing A to 

form a conditional database (CDB), and find patterns 
containing A from that conditional database
{A, B}, {A, C}, {A}  CDB A
{A, B}, {B, C} CDB B

• Observation 3: Some patterns may be found in multiple 
CDBs



December 12th, 08 NIPS Beyond Search 47

Preprocessing

p: 3 f c a b m

f b

c b p

f c a m p

o: 2
d: 1
e: 1
g: 1
h: 1
i: 1
k: 1
l : 1
n: 1

f a c d g i m p

a b c f l m o

b f h j o

b c k s p

a f c e l p m n

f: 4
c: 4
a: 3
b: 3
m: 3

f c a m p

• According to 
Observation 1, we 
count the support of 
each item by 
scanning the 
database, and 
eliminate those 
infrequent items 
from the 
transactions.

• Sort items in each 
transaction by the 
order of descending 
support value.
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Parallel Projection
• According to Observation 2, we construct CDB of 

item A; then from this CDB, we find those 
patterns containing A

• How to construct the CDB of A? 
– If a transaction contains A, this transaction should 

appear in the CDB of A
– Given a transaction {B, A, C}, it should appear in the 

CDB of A, the CDB of B, and the CDB of C
• Dedup solution: using the order of items:

– sort {B,A,C} by the order of items <A,B,C>
– Put <> into the CDB of A
– Put <A> into the CDB of B
– Put <A,B> into the CDB of C
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Example of Projection

b:

{ f c / f c / f c }

{ f c a / f / c }

{ f c a / f c a / f c a b }

{ f c a m / f c a m / c b }f c a m p

f c a b m

f b

c b p

f c a m p c:

a:

m:

p:

{ f / f / f }

Example of Projection of a database into CDBs.
Left:   sorted transactions in order of f, c, a, b, m, p
Right: conditional databases of frequent items
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Example of Projection

b:

{ f c / f c / f c }

{ f c a / f / c }

{ f c a / f c a / f c a b }

{ f c a m / f c a m / c b }f c a m p

f c a b m

f b

c b p

f c a m p c:

a:

m:

p:

{ f / f / f }

Example of Projection of a database into CDBs.
Left:   sorted transactions; 
Right: conditional databases of frequent items
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Example of Projection

b:

{ f c / f c / f c }

{ f c a / f / c }

{ f c a / f c a / f c a b }

{ f c a m / f c a m / c b }f c a m p

f c a b m

f b

c b p

f c a m p c:

a:

m:

p:

{ f / f / f }

Example of Projection of a database into CDBs.
Left:   sorted transactions; 
Right: conditional databases of frequent items
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Recursive Projections [H. Li, et al. ACM RS]

• Recursive projection 
form a search tree

• Each node is a CDB
• Using the order of 

items to prevent 
duplicated CDBs.

• Each level of breath-
first search of the 
tree can be done by 
a MapReduce
iteration.

• Once a CDB is small 
enough to fit in 
memory, we mine 
this CDB, and no 
more growth of the 
sub-tree.

c

MapReduce
Iteration 3Iteration 1

c

a

c

b

c

b

MapReduce
Iteration 2

MapReduce

D|ab D|abc

D|ac

D|bcD|b

D|a

D|c

D
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key:   value
(conditional transactions)
key: value

Map inputs
(transactions)

a f c e l p m n

b c k s p

b f h j o

a b c f l m o

f a c d g i m p

Sorted transactions
(with infrequent
  items eliminated)

f c a m p

f b

c b p

f c a b m

f c a m p

p c : 3
p : 3

{ f c a m / f c a m / c b }p:

m f : 3
m c : 3
m a : 3
m f c : 3
m f a : 3
m c a : 3
m f c a : 3

b: b : 3{ f c a / f / c }

{ f c / f c / f c }a: a : 3
a f : 3
a c : 3
a f c : 3

c : 3
c f : 3{ f / f / f }c:

{ f c a / f c a / f c a b }m:

Reduce outputs
(patterns and supports)

p:
m:
a:
c:

f c a m
f c a
fc
f

b: f

p: c b

m:

b:
a: 
c:

f c a b

f c a
f c
f

b:
p: 
m:
a:
c:

c
f c a m
f c a
f c
f

key="": value

Reduce inputs
(conditional databases)
key:   value

Map outputs

Projection using MapReduce

p:{fcam/fcam/cb} p:3, pc:3
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Outline
• Applications

– Confucius
– OpenSocial

• Key Subroutines
– Clustering
– Frequent Itemset Mining (FIM)
– Combinational Collaborative Filtering

• with PLSA
• with LDA

– Support Vector Machines
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Based on membership so far, 
and memberships of others

Predict further membership

Collaborative Filtering
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Notations
• Given a collection of co-occurrence data

– Community: C = {c1, c2, …, cN}
– User: U = {u1, u2, …, uM}
– Description: D = {d1, d2, …, dV}
– Latent aspect: Z = {z1, z2, …, zK}

• Models
– Baseline models

• Community-User (C-U) model
• Community-Description (C-D) model

– CCF: Combinational Collaborative Filtering
• Combines both baseline models
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Probabilistic Latent Semantic Analysis
(PLSA) [Hoffman 1999; Hoffman 2004]

• Document is viewed as a bag of words
• A latent semantic layer is constructed in 

between documents and words
• P(d, c) = P(d|c) P(c) = P(c)∑zP(d|z)P(z|c)

• Probability delivers explicit meaning
– P(c|c), P(d|d), P(d, c) 

• Model learning via EM or Gibbs sampling

P(d) c dz

P(z|d) P(w|z)



December 12th, 08 NIPS Beyond Search 59

Example of Latent Analysis
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Baseline Models

QuickTime?and a
 decompressor

are needed to see this picture.

QuickTime?and a
 decompressor

are needed to see this picture.

Community-User (C-U) model Community-Description (C-D) model

Community is viewed as a bag of users
c and u are rendered conditionally 
independent by introducing z
Generative process, for each user u
1. A community c is chosen uniformly
2. A topic z is selected from P(z|c)
3. A user u is generated from P(u|z)

Community is viewed as a bag of words
c and d are rendered conditionally 
independent by introducing z
Generative process, for each word d
1. A community c is chosen uniformly
2. A topic z is selected from P(z|c)
3. A word d is generated from P(d|z)

QuickTime?and a
 decompressor

are needed to see this picture.
QuickTime?and a

 decompressor
are needed to see this picture.
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CCF Model [Chen, et. al. KDD 08]

Combinational Collaborative 
Filtering (CCF) model

CCF combines both baseline models

A community is viewed as
- a bag of users AND a bag of words

By adding C-U, CCF can perform 
personalized recommendation which C-D  
alone cannot

By adding C-D, CCF can perform better 
recommendation than C-U alone, which 
may suffer from sparsity

CCF can do that C-U and C-D cannot
- P(d|u), relate user to word
- Useful for user targeting ads 
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Empirical Study
• Orkut Dataset

– Collected in July, 2007
– Two types of data were extracted

• Community-user, community-description
– 312,385 users
– 109,987 communities

• Machine farm
– Up to 200 machines in Google datacenters
– Each machine is configured with:

• A CPU faster than 2GHz
• Memory larger than 4GBytes

• Evaluations
– Community recommendation
– Speedup
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Community Recommendation

• Evaluation Method
– Leave-one-out: randomly delete one community for 

each user
– Check if a removed community can be recovered?

• Evaluation metric
– Precision and Recall
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CCF outperforms C-U The more information, the 
higher accuracy

Results
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Gibbs Sampling MapRedue Speedup

• The Orkut dataset enjoys a linear speedup when the number of 
machines is up to 100

• Reduces the training time from one day to less than 14 minutes
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Extensions
• Expand CCF to incorporate more types 

of information
• Replace PLSA with LDA

d

z

w
Nm

M

PLSA LDA

θ

z

w
Nm

M

α

βϕ

K
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…Extensions

• Consider time dimension
• Perform incremental learning
• Construct topic hierarchy
• etc…
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Outline
• Applications

– Confucius
– OpenSocial

• Key Subroutines
– Clustering
– Frequent Itemset Mining (FIM)
– Combinational Collaborative Filtering

• with PLSA
• with LDA

– Support Vector Machines [NIPS 07]

• Distributed Computing Perspectives
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Distributed Computing Perspectives
• Iterative

– Most algorithms do a series of iterations
– Data dependency: Iteration t+1 depends on t

• Parallelize each iteration
– In computation
– In storage

• Auto Fault Recovery
– Critical for large-scale tasks
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Comparison between Parallel 
Computing Frameworks

Yes
+1

Yes
+1

Yes
+1

Efficient AllReduce

NoYes
+1

Yes
+1

Recover from faults between 
iterations

NoYes
+1

Yes
+1

Recover from faults within each 
iteration

34.73.5Final Score for scalable machine 
learning

Flexible
+1+0.7

AllReduce only
+0.5

Flexibility of computation model

No
+1

No
+1

YesGFS/IO and task rescheduling 
overhead between iterations

MPIProject DoeMapReduce
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Conclusions…
Confucius Growth

Data 
Mining

675M 
users
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…Conclusions
• Seven ML subroutines (disciples) of Confucius 
• Recommendation is the push model of search 
• Recommendation systems demand scalability
• ML algorithms demand “better” distributed 

computing models than MapReduce
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…Conclusions
• Have parallelized key subroutines for mining 

massive data sets
– Spectral Clustering [ECML 08]
– Frequent Itemset Mining [ACM RS 08]
– Combinational Collaborative Filtering [KDD 08]

• with PLSA
• with LDA

– Support Vector Machines [NIPS 07]
• Relevant papers

– http://infolab.stanford.edu/~echang/
• Open Source PSVM

– http://code.google.com/p/psvm/
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