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Confucius, a Q&A System
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Web 2.0 --- Web with People
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Confucius, a Q&A system

* Allowing people to ask questions for
information that cannot be found by

Web search
5. Motivation
1. Compose Answer 1:

% Question: 4. Resolve
/ OO,

- Answer 2:
XXX

2. Audience

Answer 3:

3. Follow up PKXxxxx!

Q&A product

6. Retention



©J What are must-see attractions at Yellowstone - Google Search - Mozilla Firefox

Query: What are must-see attractions at Yellowstone

& who is the First Emperor... | [~ Google.com Mail - Inbox .| % Program (RUGS'08) | | & what are must-see at... &3 _ﬁ Seeing the opportunity £..1

GO ()8 [e |What are must-sse attractions at Yellowstone | [ Search ] w

A

[

Web Results 1 - 10 of about 12,000 for What are must-see attractions at Yellowstone (0.18 seconds)

Three Must See Aftractions at Yellowstone National Park « The View ...
Jan 15, 2008 ... Smith presents Three Must See Attractions at Yellowstone MNational Park
posted at The View West. Interested in Yellowstone MNational Park? ...

theviewwest. com/2008/01/15/hree-must-see-attractions-at-yellowstone-national-park/ - 26k

- Cached - Similar pages

Three Must See Attractions At Yellowstone National Park

Jan 15, 2008 ... Three Must See Attractions At Yellowstone MNational Park.
ezinearticles.com/?Three-Must-See-Attractions-At-Yellowstone-National-Park&id=929265 -
47K - Cached - Similar pages

Yellowstone National Park: Top Ten Attractions

YELLOWSTONE NATIONAL PARK by Yellowstone MNet. Top 10 Things to See in YNP What are
the "Must See" attractions fo view in Yellowstone? Start here! ...
www yellowstone_netfopten.htm - 16k - Cached - Similar pages

Yellowstone Must-see Attractions

Yellowstone's Must-See Attractions. The locations of all sites listed below are shown on the
map that you receive as you enter the park. ...

www.geocities.com/dmonteit/must_see_himl - 8k - Cached - Similar pages

What to See in Yellowstone

Must-See Attractions — Text Only Version - Upper Geyser Basin and Old Faithful - Grand
Canyon of the Yellowstone - Fountain Paint Pots Trail - Wildlife ...
www.geocities.com/dmonteitwhattosee_himl - 10k - Cached - Similar pages

More results from www.geocities.com »

Must See in Yellowstone National Park

B 2 MicosoftOFf... = %3 Whatare must=... %3 Downloads @ C:'\Documents a... gl Sesing_the_opp...
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£ Three Must See Attractions at Yellowstone National Park « The View West - Mozilla Firefox

Query: What are must-see attractions at Yellowstone

@ Three Must See ... £ | [~ Google.com Mail - .. & Steven Baker's Go... F'a Program (RUGS'08) |j Electrical & Compu... _ﬁ Seeing the opport... -

T R — o The Church of Jesus Christ of F
- Latter Day Saints 3

o The View West Bookstore
o WordPress.com
o WordPress.org

ARCHIVES

o May 2008 (1)

o March 2008 (1)

o February 2008 (15)
o January 2008 (19)

BLOG 5TATS
At first glance, hMammeoth Hot Springs appear as a frozen waterfall. Large terraces abound _

while being connected by trickling water. The hot acidic water from the thermal aspect below o 4,702 hits

ascends through ancient limestone deposits in the area. As the water dissolves the imestone,
it iz carried to the surface. When the suspension cools and becomes less acidic at the surface

it forms the pools and the cascading features. This area is truly an amazing and dynamic
rork of art. —
oot Avalanche

Wildlife avalanche deaths
avalanche fatalities

baseball Bill Richardson bonneville
dam Book Reviews

California budget

California Deficit education cuts

Election 2008 twil day

kindergarten geysers goose
gossage gossage governor
Schwarzenegager hall of fame
highway 66 idaho snow jaycee
carroll kindergarten lava dome

LDS ChurCh moantana
avalanche MOU nt St.

['EE 2 MicrosoftOff... * ) ThreeMustSee... | ©) Downloads | Seei v @ LOE 2:40 AM
L




©J Yosemite Attractions near Miner's Inn Hotel - Mozilla Firefox

& Steven Baker's Go...

1 HE

MINLRS INN

HoMme
ACCOMMODATIONS
AMENITIES

TravelL Grours
SpeciaLs & PACKAGES
ABOUT YOSEMITE

RESERVATIONS

Arrival: B

Dec w7 W I 2008 W

BDkaark Invite a Friend 5|gn up | Contact | Directions

™ Program (RUGS'08)

|| Electrical & Compu...

Call 888-646-2244

for Reservations

‘ Must-See Atiractions

Mare Information: | About Ynsemite| Attl'actic-ns| .ﬁ.v:ﬁvities| EnterEinment| Shopping| Dining |

Exciting Attractions near Yosemite Miner's Inn Hotel

Birdwatching
Yaosemite is home to variety of birds, induding:

Stellar's jay Raven

Black-headed grosbeak
Red-wing bladkbird
American dipper

American robin
Brewer's blackbird
Acorn woodpedker

Great gray owl
Peregrine falcon
Pileated woodpecker
Morthern goshawk

' EF 2 Microsoft OFF...

v %) Yosemite Attract... | ©) Dowrloads

r @5 C:\Documents a...

o)X

(_Query: What are must-see attractions at Yosemite

|j Yosemite Attrac... €1 @ [~ Google.com Mail - ... _ﬁ Seeing the opport...

&

‘%)"”L- 2:42 AM
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Key ML Subroutines of Confucius

5. Motivation

1. Compose Answwer 1:

-

£\
N !

| COuestion: 24 Resoluve

s P /;' | PO, >~ =
o NsSwWer z

~ Ly TP

! - PCOCC .

~

2. Aauadience

Aanswvwer 3

3. Follow up e e e e e 1
O EA product

5. Retention

1 Trigger a question session during search

 Given a question, provide labels for easy organization

 Given a question, find similar questions and their answers
-] EValuate user credentials in a domain sensitive way

 Given a question, route it to domain experts

1 Evaluate quality of answers to a question

 Machine-generated answers
December 12th, 08 NIPS Beyond Search 12



Nailve User Evaluation

Point system based on hand-crafted rules:
— registration - +100 points
— each time login = +5 points
— ask one question = +bonus points
— ask one question = +2 points
— vote on one answer =2 +1 points
— best answers - +bonus points

December 12th, 08 NIPS Beyond Search
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Shortcomings

« Easily Spammed

Mutual enforcement, answer “friends”
guestions
- 1,000 IDs of the same person

Copy & paste others’ answers
Advertising posts

e Freshness

User's recent activities are not emphasized

December 12th, 08 NIPS Beyond Search
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Link-based User Credential Ranking: HITS

Answered Another Question of B

QA pairs 2 User Relation
Ranking user using HITS*

In Out
links Links
A 0 4 (3)
B 4 0
C 1 4 (2)
D 0 2
E 5 (3) 1

* HITS 1s based on Zoltan et al, Questioning Yahoo Answers. QAWeb, WWW2008
December 12th, 08 NIPS Beyond Search 15



Q&A/Blog/BBS Search

» Lack of links
* Links can be easily spammed
» User credential can help ranking

Q QA pair ranking
A1 0.7
A2 0.2
A3 0.9

December 12th, 08 NIPS Beyond Search 16



Data Mining
Impact & Opportunities

Confucius Growth
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Web 2.0 --- Web with People

December 12th, 08 NIPS Beyond Search
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+ Socilal Platforms

App (Gadget)

App (Gadget)

December 12th, 08 NIPS Beyond Search 19
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What users are interested In?

Profiles (who | am)

Stuff (what | have) Open Social Friends (who | know)

Activities (what | do)

December 12th, 08 NIPS Beyond Search
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mﬂ? "| ||Q|'| Gooagle

%] | (5] Google.com - Calendar 1

' = C X &b | []|http://ngs.ics.uc.edu/blog/

Google.com Mail - Inbox (1) - edc... || | |:] Beyond Search: Computational Int... | |:] Ramesh Jain's Blog

DELWESTT TENUTIUSTTESS U d LUUTILTY diid 1L PTUUTNES 5.

Archives

I love India. It bothers me, therefore, that the society seems to be
much more religious now then in 19605 when [ was growing up
there. Yes, India has made good progress and possibly economically
India is in the best situation now than any other time in the last 200
years. But when one thinks at what has happened in many other
Asian countries (not only China, but also in Korea, Taiwan,
Singapore, Malayasia, and soon in Vietnam) and compares current
Indian situation to what could be, it becomes very depressing. And
sitting in this wonderful lounge at Beijing Airport, and comparing this
to the lounges in the Mumbai or Delhi Airports, this thouaght is
obvious.

TECHWICAL THOUGHTS, GENERAL UPDATES | 1 COMMENT »

Beijing Trip

Posted bv Ramesh on December 7th, 2008

The last 2 days [ have been in Beijing to attend SKG2008. I was
reguested to give a keynote talk at this conference — Semantics,
Knoledge, and Grid — and I talked about the Eventweb ideas.

Though I came here only after about 7 months, this trip showed me
a bit more of how rapidly China is transformed. It does not feel like a
developing country — all the facilities and the infrastructure makes it
look better than many developed countries. Of course, people tell
me that once yvou go away from a few top places like Beijing and
Shanghai, the story is different. Even if that is the case, what China
has accomplished seems to be unparalleled in the history. Being
Indian, it is natural for me to think about India and I feel very
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Stuff (what | have)
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Open Social APIs

Profiles (who | am)

Open Social Friends (who | know)

Activities (what | do)
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Personalized Search Example

* Infer relevance through social networks

« Query “fuji” can return
— Fuji mountain

— Fuji apples
— Fuji cameras

L
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GO ngle fuj [ Searchimages | [ Searchthe Web | 2iene=d maa= Searen

Moderate SafeSearch is on

Images Showing: | Allimage sizes v |
Try your search on Yahoo, Ask, AllTheWeb, Live. PicSearch, Ditto, Getty, Creatas, FreeFoto, WebShots, NASA, Flickr, deviantART, Photobucke

Mt Fuji, Japan Mount Fuji Morthwestern view of Mt. Fuji over And here is the Mount Fuji that the ..
1572 x 1068 - 414k - jpg 800 x 639 - 100k - jpg

December 12th, 08 NIPS Beyond Search 31



|[ Search Images ][ Search the Web ] Advanced Image Search

Preferences

Google

Moderate SafeSearch is on

Images Showing: | Allimage sizes v

Try your search on Yahoo, Ask. AllTheWeb, Live, PicSearch, Ditto. Getty. Creatas, FreeFoto, WebShots, NASA, Flickr, deviantART, Photobuck

]

(Apples, Fuji) Fuji apples are an

765 x 792 - 3Tk - Jpg
www_all-creatures.org

December 12th, 08

fuji apple Organic - Apples, Fuji

300 x 294 - 17k - Jpg 375 % 375 - BTk - jpg
www wisegeek com www_cleanfoodconnection.com

NIPS Beyond Search

fuji apple Manufacturer
800 x 600 - 81k - jpg
www_supplierlist.com

32



GO Ogle |f'-lji |[ Search Images J[ Search the Web ] %ﬁlsﬂe o

Moderate SafeSearch is on

Images Showing: | Allimage sizes
Try your search on Yahoo, Ask, AllTheWeb, Live. PicSearch, Ditto, Getty, Creatas, FreeFoto, WebShots, NASA, Flickr, deviantART, Photobucket

. as is typical of Fuji cameras ... fujifilm digital camera, digtal, ...  Fuji cameras, one with face ... Fuji fujifilm finepix AS00
400 x 400 - 78k - jpg 464 x 254 - 13k - jpg 425 % 313 - 35k - jpg 425 3% 290 - 34k - jpg
www.livingroom.org.au www fujifilm-cameras.com www_gadgetell.com www_gadgetell.com
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Personalized Recommendation

December 12th, 08 NIPS Beyond Search
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Recommendation Systems

* Photo/Video Recommendation

* Friend Recommendation

« Community/Forum Recommendation
* Ads Matching

* Performance Requirements
— Scalability, scalability, scalability

December 12th, 08 NIPS Beyond Search
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Outline

« Key Subroutines for Mining Massive SNS
— Clustering [ECML 08]
— Frequent Itemset Mining [ACM RS 08]

— Combinational Collaborative Filtering [KDD 08]
. with PLSA
. with LDA

— Support Vector Machines [NIPS 07]
 Distributed Computing Perspectives

December 12th, 08 NIPS Beyond Search
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Outline

« Key Subroutines
—p- Clustering [ECML 08]
— Frequent Itemset Mining (FIM)

— Combinational Collaborative Filtering
- with PLSA
- with LDA

— Support Vector Machines
 Distributed Computing Perspectives

December 12th, 08 NIPS Beyond Search
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Task: Targetmg Ads at SNS Users
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Mining Profiles, Friends & Activities
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Consider also User Influence

o Advertisers consider
users who are

— Relevant
— Influential

* SNS Influence Analysis
— Centrality
— Credential
— Activeness
— etc.

December 12th, 08 NIPS Beyond Search 41



Outline

« Key Subroutines
— Clustering [ECML 08]
—p Frequent Itemset Mining (FIM)

— Combinational Collaborative Filtering
« with PLSA
« with LDA

— Support Vector Machines

December 12th, 08 NIPS Beyond Search
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Collaborative Filtering

Photos/Videos

Based on membership so far,
and memberships of others

|

Predict further membership

December 12th, 08

Users

NIPS Beyond Search 43



Some Queries

Photos/Videos
Based on partially ? ?
observed matrix ?
l ?
?
Predict unobserved entries =
w !
l B 2
D
|. Will user i enjoy photo j? ?
?
Il. Will user i be interesting to user |? : 5
l1I. Will photo i be related to photo |? 2

December 12th, 08 NIPS Beyond Search



FIM-based Recommendation

To grow the base, we need association rules

@ An association rule: a,b,c — d

Ni{a,b,c,d)

@ A Bayesian interpretation: P(d | a,b,c) = N(2.b.0)

@ The key is to count the occurrences (support) of itemsets N{...)

December 12th, 08 NIPS Beyond Search
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FIM Preliminaries

* Observation 1: If an item A is not frequent, any pattern
contains A won't be frequent [R. Agrawal]

=» use a threshold to eliminate infrequent items

P> (BB

« QObservation 2: Patterns containing A are subsets of (or
found from) transactions containing A [J. Han]

=» divide-and-conquer: select transactions containing A to
form a conditional database (CDB), and find patterns
containing A from that conditional database

(A, B}, {A, C}, {A} > CDB A
(A, B}, {B, C} > CDB B

* QObservation 3: Some patterns may be found in multiple
CDBs

December 12th, 08 NIPS Beyond Search 46



Preprocessing

« According to
Observation 1, we
count the support of
each item by
scanning the
database, and
eliminate those
infrequent items
from the
transactions.

« Sort items in each
transaction by the
order of descending
support value.

facdgimp fcamp

abcflmo fcabm

o309 a™
wwauLbh

bfhjo fb

bcksp cbp

afcelpmn fcamp

S AT IQedao
RRrRRFPFRRREREN
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Parallel Projection

« According to Observation 2, we construct CDB of
item A; then from this CDB, we find those

patterns containing A
« How to construct the CDB of A?

— |f a transaction contains A, this transaction should
appear in the CDB of A

— Given a transaction {B, A, C}, it should appear in the
CDB of A, the CDB of B, and the CDB of C

« Dedup solution: using the order of items:
— sort {B,A,C} by the order of items - <A,B,C>
— Put <> into the CDB of A
— Put <A> into the CDB of B
— Put <A,B> into the CDB of C
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Example of Projection

fcamp p{fcam/fcam/cb}

fcabm : alfcab}
fb {fcalf/c}
cb a {fc/fc/fc}

fcam c. {f/f/f}

Example of Projection of a database into CDBs.
Left: sorted transactions in order of f, ¢, a, b, m, p
Right: conditional databases of frequent items
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Example of Projection

fcamp p: {fcam/fcam/chb}

fcabm m:{fca/fcal/fcab}
F

fb
cbp a {fc/fcl/fc}
fcafmp c. {f/f/f}

Example of Projection of a database into CDBs.
Left: sorted transactions;
Right: conditional databases of frequent items
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Example of Projection

fcamp p: {fcam/fcam/chb}
fcabm m:{fca/fcal/fcab}
fb:\\”b:}*fic}

C bep- a {fc/fcl/fc}
fcamp c. {f/f/f}

Example of Projection of a database into CDBs.
Left: sorted transactions;
Right: conditional databases of frequent items

December 12th, 08 NIPS Beyond Search

51



Recursive Projections . v eta. acvrs)

MapReduce MapReduce MapReduce
Iteration 1 Iteration2  Iteration 3

b/Dab € | Dlabc

D
a/la\D
C

ac
C
D D\bc
b |Dlb
e Dlc

December 12th, 08 NIPS Beyond Search

Recursive projection
form a search tree

Each node is a CDB

Using the order of
items to prevent
duplicated CDBs.

Each level of breath-
first search of the
tree can be done by
a MapReduce
iteration.

Once a CDB is small
enough to fit in
memory, we mine
this CDB, and no
more growth of the
sub-tree.
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Reduce inputs

(conditional databases)

key: value

Projection using MapReduce

Reduce outputs

(patterns and supports)

key: value

p:{fcam/fcam/cb} p:3, pc:3

m: {fcalfcalfcab}

mf:3
mc:3
ma:3
mfc:3
mfa:3
mca:3
mfca:3

Map inputs Sorted transactions Map outputs
(transactions) (with infrequent (conditional transactions)
key="": value items eliminated) key: value

facdgimp fcamp p: fcam

m: fca

a fc

c. f
abcflmo fcabm m: fcab

b: fca

a fc

c f
bfhjo fb b: f
bcksp chp p. cb
afcelpmn fcamp b: ¢

p: fcam

m: fca

a fc

c. f

b: {fcalfl/c}

b:3

a {fcl/fclfc}

a.3
af:3
ac:3
afc:3

December 12th, 08

c {f/f/f}

c:3
cf:3
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Outline

» Key Subroutines
— Clustering
—3 Frequent ltemset Mining (FIM)

— Combinational Collaborative Filtering
« with PLSA
« with LDA

Decembér1 ﬁup po rt Ve CtQﬁ PM@%GD&EL%S
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Collaborative Filtering

Based on membership so far,
and memberships of others

|

Predict further membership

December 12th, 08

Forums/Communities

Users
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Collaborative Filtering

Based on membership so far,
and memberships of others

|

Predict further membership

December 12th, 08

Forums/Communities

Users
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Notations

« Given a collection of co-occurrence data
— Community: C = {c,, C,, ..., C\}
— User: U ={uy, u,, ..., Uy}
— Description: D ={d,, d,, ..., dy}
— Latent aspect: Z = {z,, z,, ..., z}

 Models

— Baseline models
« Community-User (C-U) model
« Community-Description (C-D) model

— CCF: Combinational Collaborative Filtering
« Combines both baseline models

December 12th, 08 NIPS Beyond Search
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Probabilistic Latent Semantic Analysis
(PLSA) [Hoffman 1999; Hoffman 2004]

 Document is viewed as a bag of words

* A latent semantic layer is constructed in
between documents and words

P(d, c) = P(d|c) P(c) = P(c)> ,P(d|z)P(z|c)

Probability delivers epr|C|t meaning
— P(c|c), P(d|d), P(d, c)
* Model learning via EM or Gibbs sampling
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Example of Latent Analysis

Documents- The apple 1s the fruit of the apple

tree, species Malus domestica.

The Apple Computer Inc.1s a

IT company located at California.

Topic distnbutions: -]

IT food historv pomn

Topic distnbutions: I

IT food history pom

t

| 1Phone crack |

User queries:

December 12th, 08 NIPS Beyond Search

!
|

IT food historv porn

-1

IT food history porn

t

apple pie
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Baseline Models

Community-User (C-U) model

B
Q P(c,u) = P(e) Z P(u|z)P(z|c)

P{ulz)
L

o

Community is viewed as a bag of users

c and u are rendered conditionally

independent by introducing

Generative process, for each user u

1. A community c is chosen uniformly

2. A topic z is selected from P(z|c)

3. A user u is generated from P(u|z)
December 12th, 08
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Community-Description (C-D) model

@i"— P(c)

P(zlc)

v
_\I
<‘Z/ Fle,d) = _J-"[-“_‘} Z P[(I|3)PI: |f_‘)

P(dlz)

P \l
(¢)

Community is viewed as a bag of words
c and d are rendered conditionally
independent by introducing

Generative process, for each word d

1. A community c is chosen uniformly
2. A topic z is selected from P(z|c)

3. A word d is generated from P(d|z)
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CCF Model [Chen, et. al. KDD 08]

Combinational Collaborative
Filtering (CCF) model

CCF combines both baseline models

A community is viewed as
@._ P(c) — - a bag of users AND a bag of words
By adding C-U, CCF can perform
P(zlc) personalized recommendation which C-D

alone cannot

By adding C-D, CCF can perform better
recommendation than C-U alone, which

may suffer from sparsit
uz)  Pdiz) Y parstty

P(
— '/ \ . CCF can do that C-U and C-D cannot
U d - P(d|u), relate user to word
- Useful for user targeting ads
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Empirical Study

* Orkut Dataset
— Collected in July, 2007

— Two types of data were extracted
« Community-user, community-description

— 312,385 users
— 109,987 communities

« Machine farm
— Up to 200 machines in Google datacenters
— Each machine is configured with:
» A CPU faster than 2GHz
 Memory larger than 4GBytes
« Evaluations
— Community recommendation
— Speedup

December 12th, 08 NIPS Beyond Search
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Community Recommendation

e Evaluation Method

— Leave-one-out: randomly delete one community for
each user

— Check if a removed community can be recovered?
« Evaluation metric

— Precision and Recall
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Percentage

Results

0.4 0.45
—e— CCF precision
0.35 —— C-U precision
CCF recall
0.3 - & -C-U recall
0.25
. R72]
]
0.15 o
0.1 B
- -n_ )
0.05 a7
e
Ve
0 50 100 150 200
Length of the recommendation list 0 50 100 150 200 250 300
Number of communities a user has joined
CCF outperforms C-U - -
P The more information, the

higher accuracy

December 12th, 08 NIPS Beyond Search 64



Gibbs Sampling MapRedue Speedup

3

o

» The Orkut dataset enjoys a linear speedup when the number of

200

180
160f
140t
120t
100

&0
40
20

0

m—— | AT

e

=== Average

=r—Min _ _ ‘ _

| Machines | Time (sec.) | Speedup |

10 0,233 10
20 4,326 21.3
a0 2,280 40.5
100 1,014 91.1
200 TOG6 L16

B0 100 150 200
Mumber of machines

machines is up to 100

* Reduces the training time from one day to less than 14 minutes
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Extensions

« Expand CCF to incorporate more types
of information

» Replace PLSA with LDA

PLSA a LDA

¥

d 0

| |

Z Z

v '

w W) ¢ je—=—_B

N N K
vi M
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...Extensions

» Consider time dimension

* Perform incremental learning
» Construct topic hierarchy

* efc...

December 12th, 08 NIPS Beyond Search
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Outline

» Key Subroutines
— Clustering
— Frequent Itemset Mining (FIM)

— Combinational Collaborative Filtering
>« with PLSA
« with LDA

pecembarspWPPOIt VectaiMashings [NIPS 07] 68
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Distributed Computing Perspectives

* lterative
— Most algorithms do a series of iterations
— Data dependency: Iteration t+1 depends on t

* Parallelize each iteration
— In computation
— In storage

* Auto Fault Recovery
— Critical for large-scale tasks
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Parallel MapReduce ‘ I;p”t |
ata
=7 =1 mimmlsm ] ||_|?
Partitiunedl
) output
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Comparison between Parallel

Computing Frameworks

MapReduce Project Doe MPI
GFS/IO and task rescheduling Yes No No
overhead between iterations +1 +1
Flexibility of computation model AllReduce only Flexible
+0.5 +0.7 +1
Efficient AllIReduce Yes Yes Yes
+1 +1 +1
Recover from faults between Yes Yes No
iterations +1 +1
Recover from faults within each Yes Yes No
iteration +1 +1
Final Score for scalable machine 3.5 4.7 3

learning

December 12th, 08
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Conclusions...

Confucius Growth

Data _/\/d N

= CACA

> 0

Mining \\

~——Jul 15-Jul 29-Jul 12-Aug 26-Aug S-Sep
. e
Bpensscéal reach
=TT’
=] . = i =2 |
= G755 675M > ] | B E:ﬂé?;r:-n
B il
E users — =k
= I Linkedn
g SO B F:ﬂﬂus:lm
m Hywe
E [E= N-Etl:::-
= 225 = E;';'-":
| MMy Space
(4]

P Yaly

December 12th, 08

ey

LJum

Aol Aoy Sapd it i e 1 O

NIPS Beyond Search

A S

72



...Conclusions

Seven ML subroutines (disciples) of Confucius
Recommendation is the push model of search
Recommendation systems demand scalability

ML algorithms demand “better” distributed
computing models than MapReduce

December 12th, 08 NIPS Beyond Search
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...Conclusions

« Have parallelized key subroutines for mining
massive data sets

— Spectral Clustering [ECML 08]
— Frequent Itemset Mining [ACM RS 08]

— Combinational Collaborative Filtering [KDD 08]
« with PLSA
« with LDA

— Support Vector Machines [NIPS 07]

* Relevant papers
— http://infolab.stanford.edu/~echang/

 Open Source PSVM
— http://code.google.com/p/psvm/
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