ALGEBRAIC STATISTICS AND CONTINGENCY TABLES

Adrian Dobra
University of Washington

AMLO8: Algebraic Methods in Machine Learning
Symposium and Workshop at NIPS’'08

December 12, 2008

Adrian Dobra University of Washington (. Algebraic statistics and contingency tables December 12, 2008 1/32



SOME REVELANT PUBLICATIONS

@ Dobra, A. and Fienberg, S.E. (2000). Bounds for cell entries in
contingency tables given marginal totals and decomposable graphs.
PNAS, 97(22), 1185-11892.

@ Dobra, A, Karr, A.F. and Sanil, A.P. (2003). Preserving
confidentiality of high-dimensional tabulated data: statistical and
computational issues. Statistics and Computing, 13, 363-370.

@ Dobra, A. (2003). Markov bases for decomposable graphical models.
Bernoulli, 9(6), 1093-1108.

@ Dobra, A. and Sullivant, S. (2004). A divide-and-conquer algorithm
for generating Markov bases for multi-way tables. Computational
Statistics, 19, 347-366.

@ Dobra, A., Tebaldi, C. and West, M. (2006). Data augmentation in
multi-way contingency tables with fixed marginal totals. JSPI, 136,
355-372. %%

............

Adrian Dobra University of Washington (. Algebraic statistics and contingency tables December 12, 2008 2/32



ExXAMPLE: CZECH AUTOWORKERS

CELL BOUNDS AND TABLE COUNTING

Only 810 tables consistent with marginals R1!!.
Ry = {[ACDEF], [ABDEF],[ABCDE], [BCDF], [ABCF],[BCEF]} .

B no yes B no yes

F E D C|A no yes no yes||lA no yes no yes
neg <3 < 140 no 44 40 112 67 [35,45]  [35,44] [111,121] [63,72]
yes 129 145 12 23 [128,138] [141,150] [3,13] [18,27]
> 140 no 35 12 80 33 [29,39]  [5,14]  [76,86] [31,40]
yes 109 67 7 9 [105,115] [65,74]  [1,11]  [2,11]
>3 <140 no 23 32 70 66 [16,25] [26,35]  [68,77] [63,72]
yes 50 80 7 13 [48,57]  [77,86) 0,9  [7,16]
> 140 no 24 25 73 57 [19,28]  [16,25]  [69,78] [57,66]
yes 51 63 7 16 [47,56]  [63,72] [2,11]  [7,16]

pos <3 <140 no 5 7 21 9 [4, 14] B,12]  [12,22] [4,13]
yes 9 17 4 0,10  [12,21] 0,9]

> 140 no 4 3 11 8 [0, 10] 11, 10] B,15]  [1,10]

yes 14 17 5 2 8, 18] [10, 19] [1,11]  [0,9]

>3 <140 no 7 3 14 14 5, 14] [0, 9] [7,16]  [8,17]

yes 9 16 2 3 [2,11] [10, 19] [0,9] [0,9]

> 140 no 4 0 13 11 [0, 9] [0, 9] 8,17 [2,11]

yes 5 14 4 4 [0, 9] 5, 14] 0,9  [4,13]

TABLE: Czeck Autoworkers data from Edwards & Havranek (1985) (left panel)
and bounds given marginals R; (right panel).
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ExXAMPLE: CZECH AUTOWORKERS

LOG-LINEAR MODELS

How to do inference under log-linear models A;—Ag?

Log-linear Model Minimal Sufficient Statistics
Ay R1 U {[BCDEF]}
A R1 U {[ABCEF]}
As R1 U {[ABCDF]}
Ay R1 U {[BCDEF], [ABCEF]}
As R1 U {[BCDEF],[ABCDF]}
As R1 U {[ABCEF],[ABCDF]}
Az R1 U {[BCDEF],[ABCEF],[ABCDF]}
As Saturated
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MULTI-WAY TABLES WITH FIXED MARGINALS

NOTATION & RELEVANT ISSUES

K ={1,2,...,k}, X= (X1, Xa,..., Xk) cross-classified in n = {n(i)}icz.
IT=T1 xTr x... XIk,Ij:{].,2,...,IJ'}, /J 6{1,2,...}.

Tables consistent with fixed marginals:

T(np,,...,np,) = {x = {x(i)}ier : xp, = np,,...,Xp, = np, }.
Questions of interest
@ Compute upper and lower bounds for cell entries:
min{xx(i):i€Z,x € T(np,,...,np,)}.
@ Enumerate tables in T(np,,...,np,).
@ Estimate size of T(np,,...,np,).
@ Sample from T(np,,...,np,).
@ Probability distributions on T(np,,...,np,).
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MULTI-WAY TABLES WITH FIXED MARGINALS

CONDITIONAL INDEPENDENCE GRAPHS

e G = (K, E) associated with np,,...,np, has edges:
E = {(u,v) : {u,v} C Dj for some j}.
o Interpretation: if (u,v) ¢ E, then
Xu L X[ X\ fu,vy & uLv|K\ {u, v}
@ Special types of graphs:

© decomposable,
© reducible.
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SPECIAL TYPES OF GRAPHS

DECOMPOSABLE INDEPENDENCE GRAPHS

o Dy ={1,3,4,11}, D, = {3,4,7,8,9,11}, D3 = {2,3,9,10},
Dy = {4,5,6,7}.

o 51 ={3,4,11}, S, = {3,9}, S5 ={4,7}.

e Fixed marginals: np,, np,, np,, np,.

o Cliques: C(G) = {D1, Dy, D3, Ds}; Separators: S(G) = {51, 52, S3}.
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CALCULATING CELL BOUNDS

DECOMPOSABLE INDEPENDENCE GRAPHS

[Dobra & Fienberg, 2000] Let G = (K, E) decomposable. Let C(G) be
the cliques of G and S(G) the separators of G. Then:

min {nc(ic)|C € C(G)} > n(i) >
max{ > nclic)— > nS(iS)aO}'

CeC(G) SesS(6)

Example:

min {np,, np,, np,, np,} > n(i) >
max {np, + np, + np, + np, — ns, — ns, — ns,,0}.
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SPECIAL TYPES OF UNDIRECTED GRAPHS

REDUCIBLE INDEPENDENCE GRAPHS

o D; ={1,3,4,11}, D, = {3,4,7,8,9,11}, D3 = {2,3,9,10},
Dy = {4,5,6,7}.
o 51 ={3,4,11}, S, = {3,9}, S5 = {4,7}.
e Fixed marginals: ng, and all two-way marginals given by edges!!
e Prime components: C(G) = {Di, D2, D3, Ds}; Separators:
S(G) ={51, 52, 53}
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CALCULATING CELL BOUNDS

REDUCIBLE INDEPENDENCE GRAPHS

[Dobra & Fienberg, 2000] Let G = (K, E) reducible. Let C(G) be the
prime components of G and S(G) the separators of G. Then:

min {n¥(ic)|C € C(G)} > n(i) >
max{ > nelic) = X ns(is)ao}

CeC(G) SeS(G)

Example:

U
min {nD1 nD2,nD3,nD4} > n(i) >
L L
max {nD1 + nD2 +np, + np, — ns, — ns, — n53,0}.
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CALCULATING CELL BOUNDS

THE GENERALIZED SHUTTLE ALGORITHM

Generalized version of the Shuttle Algorithm (Buzzigoli & Giusti).

Exploit the tree-like structure of the problem.

C cells obtained by collapsing across categories.

New formulation of the bounds problem:

Find the bounds CY and C" for the cells C given information about
some cells Co C C.

Let c1, ¢» € C such that their join ¢y is still in C. Then:

ag+ag<a<c tc,

L U U L
Clp — G SCISC]_2_C2~
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CALCULATING CELL BOUNDS

THE GENERALIZED SHUTTLE ALGORITHM

Example: 2 x 3 table with fixed row and column totals.

mi N2 m3 | My
np1 N2 23 | Moy

1y Ny + 1y + Ry, + 1y Ny Ry 1y
¥ Y
l”“ +my, + Ny, + Ny, + 1y,
ny+ny, n, +ny, LN iy
') i A
[n“ +n,| |n,+ ”11| [n“ +n,| |1y +ny,7 N0y, +nz]| Ny + 1,y

; 2 :

ya ya
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CALCULATING CELL BOUNDS

THE GENERALIZED SHUTTLE ALGORITHM: EMPTY POLYTOPE!!

Example: There is no 6 x 4 x 3 integer table having the two-way margins
(Vlach, 1986):

10 1 0101

111 10 1 1010
(111 o111 1001
M= 4 1 1" o1 1| ™7 10110
11 1 110 1100
110 0011
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CALCULATING CELL BOUNDS

THE GENERALIZED SHUTTLE ALGORITHM: GAP BETWEEN BOUNDS!!

Example: There are only two 3 x 4 x 6 tables with marginals:

2 2 2 2 212 3 00

no = 3111 , N3 = 210021,

2222) 002123
212020
n23(102002).
100 2 20
01020 2

Possible values for cell (1,1,1) are 0 and 2!!
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CALCULATING CELL BOUNDS

THE GENERALIZED SHUTTLE ALGORITHM: SCALABILITY TO BIG! TABLES

Example: 2% table with three fixed 15-way marginals:
@ 62,384 zero entries out of 218 = 65,536 cells.
@ Only 128 cells have upper bounds strictly bigger than lower bounds.
e 1,729 (499) cells have counts of 1 (2).
@ 1,698 (485) of these cells have upper bounds equal lower bounds.
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IMPUTING CELL COUNTS

sLOBAL VS. LOCAL MOVES

How to produce a full table consistent with a set of fixed marginals?

@ Global moves

o Generated from the Generalized Shuttle Algorithm.

o Could take a long time to compute.

e Can balance between “long” and “short” jumps.

o Can be used to estimate # of tables consistent with fixed marginals.

@ Local moves (Markov bases)

o Formulas for decomposable case (Dobra, 2003).
o Otherwise, need algebraic methods (Groebner bases).
e Very fast once available!
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IMPUTING CELL COUNTS

sLOBAL MOVES

o Order the cells in table: Z = {i*,i?,... i™}.
@ Possible current values for cell 72:
Ho = {L(®), L(i7)+1,...,U(i?) —1,U(i?)}.
e Choose scaling factors v, € (0,1), a=1,..., m.
o Generate a candidate table n* as follows:

e fora=1,...,mdo
@ Calculate current bounds L(i*) and U(i?).
© Draw a value n*(i,) from H, from proposal:
ga(n(i?), n" (i?)) oc "7 L,
end for
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IMPUTING CELL COUNTS

ESTIMATING NUMBER OF FEASIBLE TABLE USING GLOBAL MOVES

M(T) is number of tables in T = T(np,,...,np,). Assume uniform
distribution on T:
p(n) = M%T)

Set scaling factors v, equal to one:

q(n) o< 11 7 UE LT

Write:

<
~ S
Estimate M(T) =1 > —21o~ where n(1), ... 'n(5) independently

sampled from q(-).
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ExXAMPLE: CZECH AUTOWORKERS

ESTIMATING NUMBER OF FEASIBLE TABLE USING GLOBAL MOVES (I)

Ry are the 15 four-way marginals.
Rs = {[BF], [ABCE], [ADE]}

TABLE: Bounds given R (left-hand panel) and R3 (right-hand panel).

B no yes B no yes

F E D C|A no yes no yes A no yes no yes
neg <3 < 140 no [27,58]  [25,56] [06, 134] [44,82] [0,88] [0,62] [0,224] [0, 117]
yes [108,149] [123,168] [0,22] [9,37] [0,261] [0,246] [0,24] [0,38]
> 140 no [22,49]  [0,24]  [60,96] [16,52] [0,88] [0,62] [0,224] [0,117]
yes [01,127] [45,85 [0,18] [0, 20] [0,261] [0,151] [0,24] [0, 38]
>3 <140 no [10,37]  [17,44] [48,86] [49,89] [0,58] [0,60] [0,170] [0, 148]
yes [30,68] [58,102] [0,19] [0, 25] [0,115] [0,173] [0,20] [0, 36]
> 140 no [13,37] [8,36] [55,90] [38,76] [0,58] [0,60] [0,170] [0, 148]
yes [30, 67] [45, 86] [0,19] [0,27] [0,115] [0,173] [0,20] [0, 36]
pos <3 < 140 no [0, 15] [0,13] [4,31] [0,23] [0,88] [0,62] [0,125] [0,117]
yes 0,21  [3,30] [0,9] [0,134] [0,134] [0, 38]
> 140 no [0,11] [0, 10] [0,24] [0, 18] [0,88] [0,62] [0,125] [0, 117]
yes [0, 26] [2, 30] [0, 11] [0, 9] [0,134] [0,134] [0,24] [0, 38]
>3 <140 no [1,14] [0,9] [0,26] [0, 26] [0,58] [0,60] [0,125] [0, 125]
yes [0, 19] [4,29] 0,9  [0,9] [0,115] [0,134] [0,20] [0, 36]
> 140 no [0,9] [0,9] [0,26] [0,22] [0,58] [0,60] [0,125] [0, 125]
yes [0, 19] [0, 23] [0,9] [0,13] [0,115] [0,134] [0,20] [0, 36]
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ExXAMPLE: CZECH AUTOWORKERS

ESTIMATING NUMBER OF FEASIBLE TABLE USING GLOBAL MOVES (II)

Ry are the 15 four-way marginals.
705, 884 tables consistent with R».
Estimated number of tables: 703,126.
95% Cl is 650, 000-750, 000.

Rs = {[BF], [ABCE], [ADE]}.
Estimated number of tables consistent with R3z: 10%8.
95% Cl is 1057-10%.
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IMPUTING CELL COUNTS

LocAL MoVES (MARKOV BASES)

DEFINITION

A local move g = {g(i)}iez is a multi-way array with integer entries
gli)ef...,—2,-1,0,1,2,...}.

DEFINITION

A Markov basis for T = T(np,,...,np,) allows any two tables ny, ny in
T to be connected by a series of local moves:

| A\

r

n—np=> g
=

N
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IMPUTING CELL COUNTS

MARKOV BASES FOR TWO-WAY TABLES WITH FIXED ONE-WAY MARGINALS

Primitive moves for 2x2 tables:
ni1+1 nop—11 ny
no1—1 np+1] noy
ni1 N2 \ Ny

Primitive moves for two-way tables:

o Lo if (7)) € {(i1, 1), (i, 2) }-
g1112;1112(,‘7j) = _]—7 if (’7./) S {(i17j2)7 (i17j2)}7
0, otherwise.

Extension to decomposable models with two cliques!!

December 12, 2008
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IMPUTING CELL COUNTS

MARKOV BASES FOR DECOMPOSABLE GRAPHICAL MODELS

THEOREM

[Dobra, 2001] A well defined set of primitive moves connects all tables
having a set of fixed marginals np,, ...,np,, when this set of marginals are
the cliques {Dx, ..., D,} of a decomposable graph G = (K, E).

PROOF.

For every separator S; of G there exists a proper decomposition of G:
(le \'S;, Sj, Vj2 \'Sj). A Markov basis for Dy, ..., D, is:

| \

r g
MB(D1,...,D;) = U F(V}, V).
j=2

\

Divide-and-conquer technique to generate Markov bases for reducible
graphs!!
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IMPUTING CELL COUNTS

EXAMPLE: MARKOV BASES FOR DECOMPOSABLE GRAPHICAL MODELS

e Dy ={1,3,4,11}, D, ={3,4,7,8,9,11}, D3 = {2,3,9,10},
Dy = {4,5,6,7).

o 51 ={3,4,11}, S, = {3,9}, S5 = {4,7}.

° MB(Dl, D5, D5, D4) = F(Dl, {2, ce, 11}) U F(D2, {1, 3,...,9, 11}) U
F(Da, {1,....4,7,...,11}).
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PROBABILITY DISTRIBUTIONS ON SPACES OF TABLES

NOTATIONS

n = {n(i)}iez multi-way table.

D is available data (e.g., marginals, bounds, structural zeros).
7 tables consistent with D.
Cell counts n(i) ~ Poisson(A(i)), A(i) >

PN = 3 p(n ).

ne7l
P DY) = p(nl)- fery.
p(n|)
nD,\) = - .
p(n| ) p(DIN) {neT}
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PROBABILITY DISTRIBUTIONS ON SPACES OF TABLES

LOG-LINEAR MODELS FOR POISSON MEANS

Let A log-linear model for A = {\(i)}iez:
A(i) = Mlé[d)c('t)-

THEOREM

If marginal n¢ determined from D, then, under A, p(n|D, \) does not
depend on V¢ (ic).

| A\

THEOREM
The hypergeometric distribution is obtained by conditioning on a log-linear
model whose parameters are determined from D.

v
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ExXAMPLE: CZECH AUTOWORKERS

CELL BOUNDS AND TABLE COUNTING

Only 810 tables consistent with marginals R1!!.
Ry = {[ACDEF], [ABDEF],[ABCDE], [BCDF], [ABCF],[BCEF]} .

B no yes B no yes

F E D C|A no yes no yes||A no yes no yes
neg <3 < 140 no 44 40 112 67 [35,45]  [35,44] [111,121] [63,72]
yes 129 145 12 23 [128,138] [141,150] [3,13] [18,27]
> 140 no 35 12 80 33 [29,39]  [5,14]  [76,86] [31,40]
yes 109 67 7 9 [105,115] [65,74]  [1,11]  [2,11]
>3 <140 no 23 32 70 66 [16,25] [26,35]  [68,77] [63,72]
yes 50 80 7 13 [48,57]  [77,86) 0,9  [7,16]
> 140 no 24 25 73 57 [19,28]  [16,25]  [69,78] [57,66]
yes 51 63 7 16 [47,56]  [63,72] [2,11]  [7,16]

pos <3 <140 no 5 7 21 9 [4, 14] [B,12]  [12,22] [4,13]
yes 9 17 4 0,10  [12,21] 0,9]

> 140 no 4 3 11 8 [0, 10] 11, 10] B,15]  [1,10]

yes 14 17 5 2 8, 18] [10, 19] [1,11]  [0,9]

>3 <140 no 7 3 14 14 5, 14] [0, 9] [7,16] [8,17]

yes 9 16 2 3 [2,11] [10, 19] [0,9] [0,9]

> 140 no 4 0 13 11 [0, 9] [0, 9] 8,17 [2,11]

yes 5 14 4 4 [0,9] 5, 14] [0,9]  [4,13]

TABLE: Czeck Autoworkers data from Edwards & Havranek (1985) (left panel)
and bounds given marginals R; (right panel).
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ExXAMPLE: CZECH AUTOWORKERS

LOG-LINEAR MODELS

How to do inference under log-linear models A;—Ag?

Log-linear Model Minimal Sufficient Statistics
Ay R1 U {[BCDEF]}
A R1 U {[ABCEF]}
As R1 U {[ABCDF]}
Ay R1 U {[BCDEF], [ABCEF]}
As R1 U {[BCDEF],[ABCDF]}
As R1 U {[ABCEF],[ABCDF]}
Az R1 U {[BCDEF],[ABCEF],[ABCDF]}
As Saturated
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PROBABILITY DISTRIBUTIONS ON SPACES OF TABLES

DATA AUGMENTATION

Let A log-linear model with parameters 6 for Poisson means .

At the s-th step of algorithm do:

O Simulate #6+Y from p(8].A4, n®)) o p(8].4)p(n)|A(6)). Compute
As+1) — )\(9(5—&-1))_

© Simulate n(stY) from p(n|D, A+D),

Independent Gamma (Uniform) priors for A imply conjugate (truncated)
Gamma posteriors (\West, 1997; Tebaldi & West (1998)).
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ExXAMPLE: CZECH AUTOWORKERS

DATA AUGMENTATION

Sample Mean

05 1 15 2 25 3 35 4
log, (Sample Size)

F1GURE: Convergence of the data augmentation method for the Czech
autoworkers data. The x-axis represents the iteration number on a log;, scale,
while the y-axis gives the sample mean of )y from five starting points under

model Asg.
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ExXAMPLE: CZECH AUTOWORKERS

DATA AUGMENTATION

5 1 10 1
Model 4 Model 5 Model 6

e«
o =
e«

0 5 10 15 o 5 10 15
Model 7 Model 8

FIGURE: Approximate posterior distributions for A\g under the log-linear models
Az, ..., Ag. The dotted lines represent estimates of the posterior mode and the
corresponding 95% confidence intervals.
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NEXT STEPS...

(1) Computing exact p-values.

(11) Methods for sparse tables.
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