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Example: Czech Autoworkers
Cell Bounds and Table Counting

Only 810 tables consistent with marginals R1!!.

R1 = {[ACDEF ], [ABDEF ], [ABCDE ], [BCDF ], [ABCF ], [BCEF ]} .

B no yes B no yes
F E D C A no yes no yes A no yes no yes

neg < 3 < 140 no 44 40 112 67 [35, 45] [35, 44] [111, 121] [63, 72]
yes 129 145 12 23 [128, 138] [141, 150] [3, 13] [18, 27]

≥ 140 no 35 12 80 33 [29, 39] [5, 14] [76, 86] [31, 40]
yes 109 67 7 9 [105, 115] [65, 74] [1, 11] [2, 11]

≥ 3 < 140 no 23 32 70 66 [16, 25] [26, 35] [68, 77] [63, 72]
yes 50 80 7 13 [48, 57] [77, 86] [0, 9] [7, 16]

≥ 140 no 24 25 73 57 [19, 28] [16, 25] [69, 78] [57, 66]
yes 51 63 7 16 [47, 56] [63, 72] [2, 11] [7, 16]

pos < 3 < 140 no 5 7 21 9 [4, 14] [3, 12] [12, 22] [4, 13]

yes 9 17 1 4 [0, 10] [12, 21] [0, 10] [0, 9]

≥ 140 no 4 3 11 8 [0, 10] [1, 10] [5, 15] [1, 10]
yes 14 17 5 2 [8, 18] [10, 19] [1, 11] [0, 9]

≥ 3 < 140 no 7 3 14 14 [5, 14] [0, 9] [7, 16] [8, 17]
yes 9 16 2 3 [2, 11] [10, 19] [0, 9] [0, 9]

≥ 140 no 4 0 13 11 [0, 9] [0, 9] [8, 17] [2, 11]
yes 5 14 4 4 [0, 9] [5, 14] [0, 9] [4, 13]

Table: Czeck Autoworkers data from Edwards & Havranek (1985) (left panel)
and bounds given marginals R1 (right panel).
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Example: Czech Autoworkers
Log-linear models

How to do inference under log-linear models A1–A8?

Log-linear Model Minimal Sufficient Statistics
A1 R1 ∪ {[BCDEF ]}
A2 R1 ∪ {[ABCEF ]}
A3 R1 ∪ {[ABCDF ]}
A4 R1 ∪ {[BCDEF ], [ABCEF ]}
A5 R1 ∪ {[BCDEF ], [ABCDF ]}
A6 R1 ∪ {[ABCEF ], [ABCDF ]}
A7 R1 ∪ {[BCDEF ], [ABCEF ], [ABCDF ]}
A8 Saturated

Adrian Dobra University of Washington ( AML08: Algebraic Methods in Machine Learning Symposium and Workshop at NIPS’08)Algebraic statistics and contingency tables December 12, 2008 4 / 32



Multi-way Tables with Fixed Marginals
Notation & relevant issues

K = {1, 2, . . . , k}, X = (X1,X2, . . . ,Xk) cross-classified in n = {n(i)}i∈I .
I = I1 × I2 × . . .× Ik , Ij = {1, 2, . . . , Ij}, Ij ∈ {1, 2, . . .}.

Tables consistent with fixed marginals:

T (nD1 , . . . ,nDr ) = {x = {x(i)}i∈I : xD1 = nD1 , . . . , xDr = nDr }.

Questions of interest

1 Compute upper and lower bounds for cell entries:

min{±x(i) : i ∈ I, x ∈ T (nD1 , . . . ,nDr )}.
2 Enumerate tables in T (nD1 , . . . ,nDr ).

3 Estimate size of T (nD1 , . . . ,nDr ).

4 Sample from T (nD1 , . . . ,nDr ).

5 Probability distributions on T (nD1 , . . . ,nDr ).
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Multi-way Tables with Fixed Marginals
Conditional independence graphs

G = (K ,E ) associated with nD1 , . . . ,nDr has edges:

E = {(u, v) : {u, v} ⊂ Dj for some j}.
Interpretation: if (u, v) /∈ E , then

Xu⊥Xv |XK\{u,v} ⇔ u⊥v |K \ {u, v}.
Special types of graphs:

1 decomposable,
2 reducible.
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Special Types of Graphs
Decomposable independence graphs

D1 = {1, 3, 4, 11}, D2 = {3, 4, 7, 8, 9, 11}, D3 = {2, 3, 9, 10},
D4 = {4, 5, 6, 7}.
S1 = {3, 4, 11}, S2 = {3, 9}, S3 = {4, 7}.
Fixed marginals: nD1 , nD2 , nD3 , nD4 .
Cliques: C (G ) = {D1,D2,D3,D4}; Separators: S(G ) = {S1,S2,S3}.
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Calculating Cell Bounds
Decomposable independence graphs

Theorem

[Dobra & Fienberg, 2000] Let G = (K ,E ) decomposable. Let C (G ) be
the cliques of G and S(G ) the separators of G. Then:

min {nC (iC )|C ∈ C (G )} ≥ n(i) ≥

max

{ ∑
C∈C(G)

nC (iC )−
∑

S∈S(G)

nS(iS), 0

}
.

Example:

min {nD1 , nD2 , nD3 , nD4} ≥ n(i) ≥
max {nD1 + nD2 + nD3 + nD4 − nS1 − nS2 − nS3 , 0}.
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Special Types of Undirected Graphs
Reducible independence graphs

D1 = {1, 3, 4, 11}, D2 = {3, 4, 7, 8, 9, 11}, D3 = {2, 3, 9, 10},
D4 = {4, 5, 6, 7}.
S1 = {3, 4, 11}, S2 = {3, 9}, S3 = {4, 7}.
Fixed marginals: nS1 and all two-way marginals given by edges!!
Prime components: C (G ) = {D1,D2,D3,D4}; Separators:
S(G ) = {S1,S2,S3}.
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Calculating Cell Bounds
Reducible independence graphs

Theorem

[Dobra & Fienberg, 2000] Let G = (K ,E ) reducible. Let C (G ) be the
prime components of G and S(G ) the separators of G. Then:

min
{
nU
C (iC )|C ∈ C (G )

}
≥ n(i) ≥

max

{ ∑
C∈C(G)

nL
C (iC )−

∑
S∈S(G)

nS(iS), 0

}
.

Example:

min
{
nU
D1
, nU

D2
, nU

D3
, nU

D4

}
≥ n(i) ≥

max
{
nL
D1

+ nL
D2

+ nL
D3

+ nL
D4
− nS1 − nS2 − nS3 , 0

}
.
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Calculating Cell Bounds
The generalized shuttle algorithm

Generalized version of the Shuttle Algorithm (Buzzigoli & Giusti).

Exploit the tree-like structure of the problem.

C cells obtained by collapsing across categories.

New formulation of the bounds problem:

Find the bounds CU and CL for the cells C given information about
some cells C0 ⊂ C.

Let c1, c2 ∈ C such that their join c12 is still in C. Then:

cL
1 + cL

2 ≤ c12 ≤ cU
1 + cU

2 ,

cL
12 − cU

2 ≤ c1 ≤ cU
12 − cL

2 .
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Calculating Cell Bounds
The generalized shuttle algorithm

Example: 2× 3 table with fixed row and column totals.

n11 n12 n13 n1+

n21 n22 n23 n2+

n+1 n+2 n+3 n++
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Calculating Cell Bounds
The generalized shuttle algorithm: Empty polytope!!

Example: There is no 6× 4× 3 integer table having the two-way margins
(Vlach, 1986):

n12 =


1 1 1
1 1 1
1 1 1
1 1 1

, n13 =



1 0 1
1 0 1
0 1 1
0 1 1
1 1 0
1 1 0

, n23 =



0 1 0 1
1 0 1 0
1 0 0 1
0 1 1 0
1 1 0 0
0 0 1 1

.
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Calculating Cell Bounds
The generalized shuttle algorithm: Gap between bounds!!

Example: There are only two 3× 4× 6 tables with marginals:

n12 =

 2 2 2 2
3 1 1 1
2 2 2 2

, n13 =

 2 1 2 3 0 0
2 1 0 0 2 1
0 0 2 1 2 3

,

n23 =


2 1 2 0 2 0
1 0 2 0 0 2
1 0 0 2 2 0
0 1 0 2 0 2

.

Possible values for cell (1, 1, 1) are 0 and 2!!
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Calculating Cell Bounds
The generalized shuttle algorithm: Scalability to BIG! tables

Example: 216 table with three fixed 15-way marginals:

62, 384 zero entries out of 216 = 65, 536 cells.

Only 128 cells have upper bounds strictly bigger than lower bounds.

1, 729 (499) cells have counts of 1 (2).

1, 698 (485) of these cells have upper bounds equal lower bounds.
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Imputing Cell Counts
Global vs. Local Moves

How to produce a full table consistent with a set of fixed marginals?

1 Global moves

Generated from the Generalized Shuttle Algorithm.
Could take a long time to compute.
Can balance between “long” and “short” jumps.
Can be used to estimate # of tables consistent with fixed marginals.

2 Local moves (Markov bases)

Formulas for decomposable case (Dobra, 2003).
Otherwise, need algebraic methods (Groebner bases).
Very fast once available!
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Imputing Cell Counts
Global Moves

Order the cells in table: I = {i1, i2, . . . , im}.
Possible current values for cell ia:

Ha := {L(ia), L(ia) + 1, . . . ,U(ia)− 1,U(ia)}.
Choose scaling factors va ∈ (0, 1), a = 1, . . . ,m.

Generate a candidate table n∗ as follows:

for a = 1, . . . ,m do
1 Calculate current bounds L(ia) and U(ia).
2 Draw a value n∗(ia) from Ha from proposal:

qa(n(ia), n∗(ia)) ∝ v
|n(ia)−n∗(ia)|
a .

end for
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Imputing Cell Counts
Estimating number of feasible table using global moves

M(T ) is number of tables in T = T (nD1 , . . . ,nDr ). Assume uniform
distribution on T :

p(n) = 1
M(T ) .

Set scaling factors va equal to one:

q(n) ∝
m∏

a=1

1
U(ia)−L(ia)+1 .

Write:

1 =
∑
n∈T

p(n)
q(n)q(n) ⇒M(T ) =

∑
n∈T

1
q(n)q(n).

Estimate M̂(T ) = 1
S

S∑
s=1

1
q(n(S))

where n(1), . . . ,n(S) independently

sampled from q(·).
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Example: Czech Autoworkers
Estimating number of feasible table using global moves (I)

R2 are the 15 four-way marginals.
R3 = {[BF ], [ABCE ], [ADE ]}

Table: Bounds given R2 (left-hand panel) and R3 (right-hand panel).

B no yes B no yes
F E D C A no yes no yes A no yes no yes

neg < 3 < 140 no [27, 58] [25, 56] [96, 134] [44, 82] [0, 88] [0, 62] [0, 224] [0, 117]
yes [108, 149] [123, 168] [0, 22] [9, 37] [0, 261] [0, 246] [0, 24] [0, 38]

≥ 140 no [22, 49] [0, 24] [60, 96] [16, 52] [0, 88] [0, 62] [0, 224] [0, 117]
yes [91, 127] [45, 85] [0, 18] [0, 20] [0, 261] [0, 151] [0, 24] [0, 38]

≥ 3 < 140 no [10, 37] [17, 44] [48, 86] [49, 89] [0, 58] [0, 60] [0, 170] [0, 148]
yes [30, 68] [58, 102] [0, 19] [0, 25] [0, 115] [0, 173] [0, 20] [0, 36]

≥ 140 no [13, 37] [8, 36] [55, 90] [38, 76] [0, 58] [0, 60] [0, 170] [0, 148]
yes [30, 67] [45, 86] [0, 19] [0, 27] [0, 115] [0, 173] [0, 20] [0, 36]

pos < 3 < 140 no [0, 15] [0, 13] [4, 31] [0, 23] [0, 88] [0, 62] [0, 125] [0, 117]

yes [0, 21] [3, 30] [0, 10] [0, 9] [0, 134] [0, 134] [0, 10] [0, 38]

≥ 140 no [0, 11] [0, 10] [0, 24] [0, 18] [0, 88] [0, 62] [0, 125] [0, 117]
yes [0, 26] [2, 30] [0, 11] [0, 9] [0, 134] [0, 134] [0, 24] [0, 38]

≥ 3 < 140 no [1, 14] [0, 9] [0, 26] [0, 26] [0, 58] [0, 60] [0, 125] [0, 125]
yes [0, 19] [4, 29] [0, 9] [0, 9] [0, 115] [0, 134] [0, 20] [0, 36]

≥ 140 no [0, 9] [0, 9] [0, 26] [0, 22] [0, 58] [0, 60] [0, 125] [0, 125]
yes [0, 19] [0, 23] [0, 9] [0, 13] [0, 115] [0, 134] [0, 20] [0, 36]
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Example: Czech Autoworkers
Estimating number of feasible table using global moves (II)

R2 are the 15 four-way marginals.
705, 884 tables consistent with R2.
Estimated number of tables: 703, 126.
95% CI is 650, 000–750, 000.

R3 = {[BF ], [ABCE ], [ADE ]}.
Estimated number of tables consistent with R3: 1058.
95% CI is 1057–1059.
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Imputing Cell Counts
Local Moves (Markov bases)

Definition

A local move g = {g(i)}i∈I is a multi-way array with integer entries
g(i) ∈ {. . . ,−2,−1, 0, 1, 2, . . .}.

Definition

A Markov basis for T = T (nD1 , . . . ,nDr ) allows any two tables n1, n2 in
T to be connected by a series of local moves:

n1 − n2 =
r∑

j=1
gj .
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Imputing Cell Counts
Markov bases for two-way tables with fixed one-way marginals

Primitive moves for 2x2 tables:

n11 + 1 n12 − 1 n1+

n21 − 1 n22 + 1 n2+

n+1 n+2 n++

Primitive moves for two-way tables:

g i1i2;j1j2(i , j) =


1, if (i , j) ∈ {(i1, j1), (i2, j2)}.
−1, if (i , j) ∈ {(i1, j2), (i1, j2)},
0, otherwise.

.

Extension to decomposable models with two cliques!!
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Imputing Cell Counts
Markov bases for decomposable graphical models

Theorem

[Dobra, 2001] A well defined set of primitive moves connects all tables
having a set of fixed marginals nD1 , . . . ,nDr , when this set of marginals are
the cliques {D1, . . . ,Dr} of a decomposable graph G = (K ,E ).

Proof.

For every separator Sj of G there exists a proper decomposition of G :
(V 1

j \ Sj ,Sj ,V
2
j \ Sj). A Markov basis for D1, . . . ,Dr is:

MB(D1, . . . ,Dr ) =
r⋃

j=2
F(V 1

j ,V
j
2).

Divide-and-conquer technique to generate Markov bases for reducible
graphs!!
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Imputing cell counts
Example: Markov bases for decomposable graphical models

D1 = {1, 3, 4, 11}, D2 = {3, 4, 7, 8, 9, 11}, D3 = {2, 3, 9, 10},
D4 = {4, 5, 6, 7}.
S1 = {3, 4, 11}, S2 = {3, 9}, S3 = {4, 7}.
MB(D1,D2,D3,D4) = F(D1, {2, . . . , 11}) ∪ F(D2, {1, 3, . . . , 9, 11}) ∪
F(D4, {1, . . . , 4, 7, . . . , 11}).
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Probability Distributions on Spaces of Tables
Notations

n = {n(i)}i∈I multi-way table.

D is available data (e.g., marginals, bounds, structural zeros).

T tables consistent with D.

Cell counts n(i) ∼ Poisson(λ(i)), λ(i) > 0.

p(D|λ) =
∑
n′∈T

p(n′|λ).

p(n,D|λ) = p(n|λ) · I{n∈T }.

p(n|D, λ) =
p(n|λ)

p(D|λ)
· I{n∈T }.
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Probability Distributions on Spaces of Tables
Log-linear models for Poisson means

Let A log-linear model for λ = {λ(i)}i∈I :

λ(i) = µ
∏
C

ψC (iC ).

Theorem

If marginal nC determined from D, then, under A, p(n|D, λ) does not
depend on ψC (iC ).

Theorem

The hypergeometric distribution is obtained by conditioning on a log-linear
model whose parameters are determined from D.
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Example: Czech Autoworkers
Cell Bounds and Table Counting

Only 810 tables consistent with marginals R1!!.

R1 = {[ACDEF ], [ABDEF ], [ABCDE ], [BCDF ], [ABCF ], [BCEF ]} .

B no yes B no yes
F E D C A no yes no yes A no yes no yes

neg < 3 < 140 no 44 40 112 67 [35, 45] [35, 44] [111, 121] [63, 72]
yes 129 145 12 23 [128, 138] [141, 150] [3, 13] [18, 27]

≥ 140 no 35 12 80 33 [29, 39] [5, 14] [76, 86] [31, 40]
yes 109 67 7 9 [105, 115] [65, 74] [1, 11] [2, 11]

≥ 3 < 140 no 23 32 70 66 [16, 25] [26, 35] [68, 77] [63, 72]
yes 50 80 7 13 [48, 57] [77, 86] [0, 9] [7, 16]

≥ 140 no 24 25 73 57 [19, 28] [16, 25] [69, 78] [57, 66]
yes 51 63 7 16 [47, 56] [63, 72] [2, 11] [7, 16]

pos < 3 < 140 no 5 7 21 9 [4, 14] [3, 12] [12, 22] [4, 13]

yes 9 17 1 4 [0, 10] [12, 21] [0, 10] [0, 9]

≥ 140 no 4 3 11 8 [0, 10] [1, 10] [5, 15] [1, 10]
yes 14 17 5 2 [8, 18] [10, 19] [1, 11] [0, 9]

≥ 3 < 140 no 7 3 14 14 [5, 14] [0, 9] [7, 16] [8, 17]
yes 9 16 2 3 [2, 11] [10, 19] [0, 9] [0, 9]

≥ 140 no 4 0 13 11 [0, 9] [0, 9] [8, 17] [2, 11]
yes 5 14 4 4 [0, 9] [5, 14] [0, 9] [4, 13]

Table: Czeck Autoworkers data from Edwards & Havranek (1985) (left panel)
and bounds given marginals R1 (right panel).
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Example: Czech Autoworkers
Log-linear models

How to do inference under log-linear models A1–A8?

Log-linear Model Minimal Sufficient Statistics
A1 R1 ∪ {[BCDEF ]}
A2 R1 ∪ {[ABCEF ]}
A3 R1 ∪ {[ABCDF ]}
A4 R1 ∪ {[BCDEF ], [ABCEF ]}
A5 R1 ∪ {[BCDEF ], [ABCDF ]}
A6 R1 ∪ {[ABCEF ], [ABCDF ]}
A7 R1 ∪ {[BCDEF ], [ABCEF ], [ABCDF ]}
A8 Saturated
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Probability Distributions on Spaces of Tables
Data augmentation

Let A log-linear model with parameters θ for Poisson means λ.

At the s-th step of algorithm do:

1 Simulate θ(s+1) from p(θ|A,n(s)) ∝ p(θ|A)p(n(s)|λ(θ)). Compute
λ(s+1) = λ(θ(s+1)).

2 Simulate n(s+1) from p(n|D, λ(s+1)).

Independent Gamma (Uniform) priors for λ imply conjugate (truncated)
Gamma posteriors (West, 1997; Tebaldi & West (1998)).
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Example: Czech Autoworkers
Data augmentation

Figure: Convergence of the data augmentation method for the Czech
autoworkers data. The x-axis represents the iteration number on a log10 scale,
while the y -axis gives the sample mean of λ0 from five starting points under
model A8.
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Example: Czech Autoworkers
Data augmentation

Figure: Approximate posterior distributions for λ0 under the log-linear models
A1, . . . ,A8. The dotted lines represent estimates of the posterior mode and the
corresponding 95% confidence intervals.
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Next Steps...

(i) Computing exact p-values.

(ii) Methods for sparse tables.
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