AlGEBRAIC STATISTICS AND CONTINGENCY TABLES

Adrian Dobra
University of Washington

AML08: Algebraic Methods in Machine Learning Symposium and Workshop at NIPS'08

December 12, 2008

Some Revelant Publications

(1) Dobra, A. and Fienberg, S.E. (2000). Bounds for cell entries in contingency tables given marginal totals and decomposable graphs. PNAS, 97(22), 1185-11892.
(2) Dobra, A., Karr, A.F. and Sanil, A.P. (2003). Preserving confidentiality of high-dimensional tabulated data: statistical and computational issues. Statistics and Computing, 13, 363-370.
(3) Dobra, A. (2003). Markov bases for decomposable graphical models. Bernoulli, 9(6), 1093-1108.
(9) Dobra, A. and Sullivant, S. (2004). A divide-and-conquer algorithm for generating Markov bases for multi-way tables. Computational Statistics, 19, 347-366.
(6) Dobra, A., Tebaldi, C. and West, M. (2006). Data augmentation in multi-way contingency tables with fixed marginal totals. JSPI, 136, 355-372.

Example: Czech Autoworkers

Cell Bounds and Table Counting
Only 810 tables consistent with marginals \mathcal{R}_{1} !!.

Table: Czeck Autoworkers data from Edwards \& Havranek (1985) (left panel) and bounds given marginals \mathcal{R}_{1} (right panel).

Example: Czech Autoworkers

How to do inference under log-linear models $\mathcal{A}_{1}-\mathcal{A}_{8}$?

Log-linear Model	Minimal Sufficient Statistics
\mathcal{A}_{1}	$\mathcal{R}_{1} \cup\{[B C D E F]\}$
\mathcal{A}_{2}	$\mathcal{R}_{1} \cup\{[A B C E F]\}$
\mathcal{A}_{3}	$\mathcal{R}_{1} \cup\{[A B C D F]\}$
\mathcal{A}_{4}	$\mathcal{R}_{1} \cup\{[B C D E F],[A B C E F]\}$
\mathcal{A}_{5}	$\mathcal{R}_{1} \cup\{[B C D E F],[A B C D F]\}$
\mathcal{A}_{6}	$\mathcal{R}_{1} \cup\{[A B C E F],[A B C D F]\}$
\mathcal{A}_{7}	$\mathcal{R}_{1} \cup\{[B C D E F],[A B C E F],[A B C D F]\}$
\mathcal{A}_{8}	Saturated

Multi-way Tables with Fixed Marginals

$K=\{1,2, \ldots, k\}, \mathbf{X}=\left(X_{1}, X_{2}, \ldots, X_{k}\right)$ cross-classified in $\mathbf{n}=\{n(i)\}_{i \in \mathcal{I}}$.
$\mathcal{I}=\mathcal{I}_{1} \times \mathcal{I}_{2} \times \ldots \times \mathcal{I}_{k}, \mathcal{I}_{j}=\left\{1,2, \ldots, \mathcal{I}_{j}\right\}, \boldsymbol{I}_{j} \in\{1,2, \ldots\}$.
Tables consistent with fixed marginals:

$$
T\left(\mathbf{n}_{D_{1}}, \ldots, \mathbf{n}_{D_{r}}\right)=\left\{\mathbf{x}=\{x(i)\}_{i \in \mathcal{I}}: \mathbf{x}_{D_{1}}=\mathbf{n}_{D_{1}}, \ldots, \mathbf{x}_{D_{r}}=\mathbf{n}_{D_{r}}\right\}
$$

Questions of interest
(1) Compute upper and lower bounds for cell entries:

$$
\min \left\{ \pm x(i): i \in \mathcal{I}, \mathbf{x} \in T\left(\mathbf{n}_{D_{1}}, \ldots, \mathbf{n}_{D_{r}}\right)\right\} .
$$

(2) Enumerate tables in $T\left(\mathbf{n}_{D_{1}}, \ldots, \mathbf{n}_{D_{r}}\right)$.
(3) Estimate size of $T\left(\mathbf{n}_{D_{1}}, \ldots, \mathbf{n}_{D_{r}}\right)$.
(9) Sample from $T\left(\mathbf{n}_{D_{1}}, \ldots, \mathbf{n}_{D_{r}}\right)$.
(©) Probability distributions on $T\left(\mathbf{n}_{D_{1}}, \ldots, \mathbf{n}_{D_{r}}\right)$.

Multi-way Tables with Fixed Marginals

- $G=(K, E)$ associated with $\mathbf{n}_{D_{1}}, \ldots, \mathbf{n}_{D_{r}}$ has edges:

$$
E=\left\{(u, v):\{u, v\} \subset D_{j} \text { for some } j\right\} .
$$

- Interpretation: if $(u, v) \notin E$, then

$$
X_{u} \perp X_{v}\left|X_{K \backslash\{u, v\}} \Leftrightarrow u \perp v\right| K \backslash\{u, v\}
$$

- Special types of graphs:
(1) decomposable,
(2) reducible.

Special Types of Graphs

DECOMPOSABLE INDEPENDENCE GRAPHS

- $D_{1}=\{1,3,4,11\}, D_{2}=\{3,4,7,8,9,11\}, D_{3}=\{2,3,9,10\}$, $D_{4}=\{4,5,6,7\}$.
- $S_{1}=\{3,4,11\}, S_{2}=\{3,9\}, S_{3}=\{4,7\}$.
- Fixed marginals: $\mathbf{n}_{D_{1}}, \mathbf{n}_{D_{2}}, \mathbf{n}_{D_{3}}, \mathbf{n}_{D_{4}}$.
- Cliques: $C(G)=\left\{D_{1}, D_{2}, D_{3}, D_{4}\right\}$; Separators: $S(G)=\left\{S_{1}, S_{2}, S_{3}\right\}$.

Calculating Cell Bounds

Decomposable independence graphs

Theorem

[Dobra \& Fienberg, 2000] Let $G=(K, E)$ decomposable. Let $C(G)$ be the cliques of G and $S(G)$ the separators of G. Then:

$$
\begin{gathered}
\min \left\{n_{C}\left(i_{C}\right) \mid C \in C(G)\right\} \geq n(i) \geq \\
\max \left\{\sum_{C \in C(G)} n_{C}\left(i_{C}\right)-\sum_{S \in S(G)} n_{S}\left(i_{S}\right), 0\right\} .
\end{gathered}
$$

Example:

$$
\begin{gathered}
\min \left\{n_{D_{1}}, n_{D_{2}}, n_{D_{3}}, n_{D_{4}}\right\} \geq n(i) \geq \\
\max \left\{n_{D_{1}}+n_{D_{2}}+n_{D_{3}}+n_{D_{4}}-n_{S_{1}}-n_{S_{2}}-n_{S_{3}}, 0\right\} .
\end{gathered}
$$

Special Types of Undirected Graphs

- $D_{1}=\{1,3,4,11\}, D_{2}=\{3,4,7,8,9,11\}, D_{3}=\{2,3,9,10\}$, $D_{4}=\{4,5,6,7\}$.
- $S_{1}=\{3,4,11\}, S_{2}=\{3,9\}, S_{3}=\{4,7\}$.
- Fixed marginals: $\mathbf{n}_{S_{1}}$ and all two-way marginals given by edges!!
- Prime components: $C(G)=\left\{D_{1}, D_{2}, D_{3}, D_{4}\right\}$; Separators: $S(G)=\left\{S_{1}, S_{2}, S_{3}\right\}$.

Calculating Cell Bounds

Reducible independence graphs

Theorem

[Dobra \& Fienberg, 2000] Let $G=(K, E)$ reducible. Let $C(G)$ be the prime components of G and $S(G)$ the separators of G. Then:

$$
\begin{gathered}
\min \left\{n_{C}^{U}\left(i_{C}\right) \mid C \in C(G)\right\} \geq n(i) \geq \\
\max \left\{\sum_{C \in C(G)} n_{C}^{L}\left(i_{C}\right)-\sum_{S \in S(G)} n_{S}\left(i_{S}\right), 0\right\} .
\end{gathered}
$$

Example:

$$
\begin{gathered}
\min \left\{n_{D_{1}}^{U}, n_{D_{2}}^{U}, n_{D_{3}}^{U}, n_{D_{4}}^{U}\right\} \geq n(i) \geq \\
\max \left\{n_{D_{1}}^{L}+n_{D_{2}}^{L}+n_{D_{3}}^{L}+n_{D_{4}}^{L}-n_{S_{1}}-n_{S_{2}}-n_{S_{3}}, 0\right\} .
\end{gathered}
$$

Calculating Cell Bounds

The generalized shuttle algorithm

- Generalized version of the Shuttle Algorithm (Buzzigoli \& Giusti).
- Exploit the tree-like structure of the problem.
- \mathcal{C} cells obtained by collapsing across categories.
- New formulation of the bounds problem:

Find the bounds \mathcal{C}^{U} and \mathcal{C}^{L} for the cells \mathcal{C} given information about some cells $\mathcal{C}_{0} \subset \mathcal{C}$.

- Let $c_{1}, c_{2} \in \mathcal{C}$ such that their join c_{12} is still in \mathcal{C}. Then:

$$
\begin{aligned}
& c_{1}^{L}+c_{2}^{L} \leq c_{12} \leq c_{1}^{U}+c_{2}^{U} \\
& c_{12}^{L}-c_{2}^{U} \leq c_{1} \leq c_{12}^{U}-c_{2}^{L}
\end{aligned}
$$

Calculating Cell Bounds

The generalized shuttle algorithm

Example: 2×3 table with fixed row and column totals.

n_{11}	n_{12}	n_{13}	n_{1+}
n_{21}	n_{22}	n_{23}	n_{2+}
n_{+1}	n_{+2}	n_{+3}	n_{++}

Calculating Cell Bounds

Example: There is no $6 \times 4 \times 3$ integer table having the two-way margins (Vlach, 1986):

$$
n_{12}=\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right), n_{13}=\left(\begin{array}{lll}
1 & 0 & 1 \\
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 1 & 1 \\
1 & 1 & 0 \\
1 & 1 & 0
\end{array}\right), n_{23}=\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right)
$$

Calculating Cell Bounds

Example: There are only two $3 \times 4 \times 6$ tables with marginals:

$$
\begin{gathered}
n_{12}=\left(\begin{array}{llll}
2 & 2 & 2 & 2 \\
3 & 1 & 1 & 1 \\
2 & 2 & 2 & 2
\end{array}\right), n_{13}=\left(\begin{array}{llllll}
2 & 1 & 2 & 3 & 0 & 0 \\
2 & 1 & 0 & 0 & 2 & 1 \\
0 & 0 & 2 & 1 & 2 & 3
\end{array}\right), \\
n_{23}=\left(\begin{array}{llllll}
2 & 1 & 2 & 0 & 2 & 0 \\
1 & 0 & 2 & 0 & 0 & 2 \\
1 & 0 & 0 & 2 & 2 & 0 \\
0 & 1 & 0 & 2 & 0 & 2
\end{array}\right) .
\end{gathered}
$$

Possible values for cell $(1,1,1)$ are 0 and 2 !!

Example: 2^{16} table with three fixed 15 -way marginals:

- 62,384 zero entries out of $2^{16}=65,536$ cells.
- Only 128 cells have upper bounds strictly bigger than lower bounds.
- 1,729 (499) cells have counts of 1 (2).
- 1,698 (485) of these cells have upper bounds equal lower bounds.

Imputing Cell Counts

How to produce a full table consistent with a set of fixed marginals?
(1) Global moves

- Generated from the Generalized Shuttle Algorithm.
- Could take a long time to compute.
- Can balance between "long" and "short" jumps.
- Can be used to estimate \# of tables consistent with fixed marginals.
(2) Local moves (Markov bases)
- Formulas for decomposable case (Dobra, 2003).
- Otherwise, need algebraic methods (Groebner bases).
- Very fast once available!

Imputing Cell Counts

Global Moves

- Order the cells in table: $\mathcal{I}=\left\{i^{1}, i^{2}, \ldots, i^{m}\right\}$.
- Possible current values for cell i^{a} :

$$
\mathcal{H}_{a}:=\left\{L\left(i^{a}\right), L\left(i^{a}\right)+1, \ldots, U\left(i^{a}\right)-1, U\left(i^{a}\right)\right\} .
$$

- Choose scaling factors $v_{a} \in(0,1), a=1, \ldots, m$.
- Generate a candidate table \mathbf{n}^{*} as follows:
- for $a=1, \ldots, m$ do
(1) Calculate current bounds $L\left(i^{a}\right)$ and $U\left(i^{a}\right)$.
(2) Draw a value $n^{*}\left(i_{a}\right)$ from \mathcal{H}_{a} from proposal:

$$
q_{a}\left(n\left(i^{a}\right), n^{*}\left(i^{a}\right)\right) \propto v_{a}^{\left|n\left(i^{a}\right)-n^{*}\left(i^{a}\right)\right|} .
$$

end for

Imputing Cell Counts

$\mathcal{M}(T)$ is number of tables in $T=T\left(\mathbf{n}_{D_{1}}, \ldots, \mathbf{n}_{D_{r}}\right)$. Assume uniform distribution on T :

$$
p(\mathbf{n})=\frac{1}{\mathcal{M}(T)}
$$

Set scaling factors v_{a} equal to one:

$$
q(n) \propto \prod_{a=1}^{m} \frac{1}{U\left(i^{a}\right)-L\left(i^{a}\right)+1} .
$$

Write:

$$
1=\sum_{\mathbf{n} \in T} \frac{p(\mathbf{n})}{q(\mathbf{n})} q(\mathbf{n}) \Rightarrow \mathcal{M}(T)=\sum_{\mathbf{n} \in T} \frac{1}{q(\mathbf{n})} q(\mathbf{n}) .
$$

Estimate $\hat{\mathcal{M}}(T)=\frac{1}{S} \sum_{S=1}^{S} \frac{1}{q\left(\mathbf{n}^{(S)}\right)}$ where $\mathbf{n}^{(1)}, \ldots, \mathbf{n}^{(S)}$ independently sampled from $q(\cdot)$.

Example: Czech Autoworkers

Estimating number of feasible table using global moves (I)

\mathcal{R}_{2} are the 15 four-way marginals.
 $\mathcal{R}_{3}=\{[B F],[A B C E],[A D E]\}$

TABLE: Bounds given \mathcal{R}_{2} (left-hand panel) and \mathcal{R}_{3} (right-hand panel).

F	E	D	C	B	no		yes		B	no		yes	
				A	no	yes	no	yes	A	no	yes	no	yes
neg	< 3	< 140	no		[27, 58]	[25, 56]	[96, 134]	[44, 82]		[0, 88]	[0, 62]	[0, 224]	[0, 117]
			yes		[108, 149]	[123, 168]	[0, 22]	[9, 37]		[0, 261]	[0, 246]	[0, 24]	[0,38]
		≥ 140	no		[22, 49]	[0, 24]	[60, 96]	$[16,52]$		[0, 88]	[0, 62]	[0, 224]	[0, 117]
			yes		[91, 127]	[45, 85]	[0, 18]	[0, 20]		[0, 261]	[0, 151]	[0, 24]	[0,38]
	≥ 3	< 140	no		[10, 37]	[17, 44]	[48, 86]	[49, 89]		[0,58]	[0, 60]	[0, 170]	[0, 148]
			yes		[30, 68]	[58,102$]$	[0,19$]$	[0, 25]		[0, 115]	[0, 173]	[0, 20]	[0,36]
		≥ 140	no		[13, 37]	[8, 36]	[55, 90]	[38, 76]		[0,58]	[0, 60]	[0, 170]	[0, 148]
			yes		[30, 67]	[45, 86]	[0,19$]$	[0, 27]		[0, 115]	[0, 173]	[0, 20]	[0,36]
pos	<3	<140	no		[0, 15]	[0, 13]	[4, 31]	[0, 23]		[0, 88]	[0, 62]	[0, 125]	[0, 117]
			yes		[0, 21]	[3, 30]	[0, 10]	[0, 9]		[0, 134]	[0, 134]	[0, 10]	[0, 38]
		≥ 140	no		[0, 11]	[0, 10]	[0, 24]	[0, 18]		[0, 88]	[0, 62]	[0, 125]	[0, 117]
			yes		[0, 26]	[2, 30]	[0, 11]	[0, 9]		[0, 134]	[0, 134]	[0, 24]	[0,38]
	≥ 3	< 140	no		[1, 14]	[0, 9]	[0, 26]	[0, 26]		[0,58]	[0, 60]	[0, 125]	[0,125]
			yes		[0, 19]	[4, 29]	[0, 9]	[0, 9]		[0, 115]	[0, 134]	[0, 20]	[0,36]
		≥ 140	no		[0, 9]	[0, 9]	[0, 26]	$[0,22]$		$[0,58]$	[0, 60]	[0, 125]	[0, 125]
			yes		[0, 19]	[0, 23]	[0, 9]	[0, 13]		[0, 115]	[0, 134]	[0, 20]	[0,36]

Example: Czech Autoworkers

\mathcal{R}_{2} are the 15 four-way marginals.
705,884 tables consistent with \mathcal{R}_{2}.
Estimated number of tables: 703, 126.
$95 \% \mathrm{Cl}$ is $650,000-750,000$.
$\mathcal{R}_{3}=\{[B F],[A B C E],[A D E]\}$.
Estimated number of tables consistent with $\mathcal{R}_{3}: 10^{58}$. $95 \% \mathrm{Cl}$ is $10^{57}-10^{59}$.

Imputing Cell Counts

DEFINITION

A local move $\mathbf{g}=\{g(i)\}_{i \in \mathcal{I}}$ is a multi-way array with integer entries $g(i) \in\{\ldots,-2,-1,0,1,2, \ldots\}$.

DEFINITION

A Markov basis for $T=T\left(\mathbf{n}_{D_{1}}, \ldots, \mathbf{n}_{D_{r}}\right)$ allows any two tables $\mathbf{n}_{1}, \mathbf{n}_{2}$ in T to be connected by a series of local moves:

$$
\mathbf{n}_{1}-\mathbf{n}_{2}=\sum_{j=1}^{r} \mathbf{g}^{j}
$$

Imputing Cell Counts

Primitive moves for 2×2 tables:

$$
\begin{array}{cc|c}
n_{11}+1 & n_{12}-1 & n_{1+} \\
n_{21}-1 & n_{22}+1 & n_{2+} \\
\hline n_{+1} & n_{+2} & n_{++}
\end{array}
$$

Primitive moves for two-way tables:

$$
g^{i_{1} i_{2} ; j_{1} j_{2}}(i, j)=\left\{\begin{array}{cc}
1, & \text { if }(i, j) \in\left\{\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right)\right\} . \\
-1, & \text { if }(i, j) \in\left\{\left(i_{1}, j_{2}\right),\left(i_{1}, j_{2}\right)\right\}, \\
0, & \text { otherwise. }
\end{array} .\right.
$$

Extension to decomposable models with two cliques!!

Imputing Cell Counts

MARKOV BASES FOR DECOMPOSABLE GRAPHICAL MODELS

Theorem

[Dobra, 2001] A well defined set of primitive moves connects all tables having a set of fixed marginals $\mathbf{n}_{D_{1}}, \ldots, \mathbf{n}_{D_{r}}$, when this set of marginals are the cliques $\left\{D_{1}, \ldots, D_{r}\right\}$ of a decomposable graph $G=(K, E)$.

Proof.

For every separator S_{j} of G there exists a proper decomposition of G : $\left(V_{j}^{1} \backslash S_{j}, S_{j}, V_{j}^{2} \backslash S_{j}\right)$. A Markov basis for D_{1}, \ldots, D_{r} is:

$$
\operatorname{MB}\left(D_{1}, \ldots, D_{r}\right)=\bigcup_{j=2}^{r} \mathrm{~F}\left(V_{j}^{1}, V_{2}^{j}\right) .
$$

Divide-and-conquer technique to generate Markov bases for reducible graphs!!

Imputing cell counts

Example: Markov bases For decomposable graphical models

- $D_{1}=\{1,3,4,11\}, D_{2}=\{3,4,7,8,9,11\}, D_{3}=\{2,3,9,10\}$, $D_{4}=\{4,5,6,7\}$.
- $S_{1}=\{3,4,11\}, S_{2}=\{3,9\}, S_{3}=\{4,7\}$.
- $\operatorname{MB}\left(D_{1}, D_{2}, D_{3}, D_{4}\right)=F\left(D_{1},\{2, \ldots, 11\}\right) \cup \mathrm{F}\left(D_{2},\{1,3, \ldots, 9,11\}\right) \cup$ $F\left(D_{4},\{1, \ldots, 4,7, \ldots, 11\}\right)$.

Probability Distributions on Spaces of Tables

Notations

- $\mathbf{n}=\{n(i)\}_{i \in \mathcal{I}}$ multi-way table.
- \mathcal{D} is available data (e.g., marginals, bounds, structural zeros).
- \mathcal{T} tables consistent with \mathcal{D}.
- Cell counts $n(i) \sim \operatorname{Poisson}(\lambda(i)), \lambda(i)>0$.

$$
\begin{aligned}
p(\mathcal{D} \mid \lambda) & =\sum_{\mathbf{n}^{\prime} \in \mathcal{T}} p\left(\mathbf{n}^{\prime} \mid \lambda\right) . \\
p(\mathbf{n}, \mathcal{D} \mid \lambda) & =p(\mathbf{n} \mid \lambda) \cdot I_{\{\mathbf{n} \in \mathcal{T}\}} . \\
p(\mathbf{n} \mid \mathcal{D}, \lambda) & =\frac{p(\mathbf{n} \mid \lambda)}{p(\mathcal{D} \mid \lambda)} \cdot I_{\{\mathbf{n} \in \mathcal{T}\}} .
\end{aligned}
$$

Probability Distributions on Spaces of Tables

Log-Linear models for Poisson means

Let \mathcal{A} log-linear model for $\lambda=\{\lambda(i)\}_{i \in \mathcal{I}}$:

$$
\lambda(i)=\mu \prod_{C} \psi_{C}\left(i_{C}\right) .
$$

Theorem

If marginal \mathbf{n}_{C} determined from \mathcal{D}, then, under $\mathcal{A}, p(\mathbf{n} \mid \mathcal{D}, \lambda)$ does not depend on $\psi_{C}\left(i_{C}\right)$.

Theorem

The hypergeometric distribution is obtained by conditioning on a log-linear model whose parameters are determined from \mathcal{D}.

Example: Czech Autoworkers

Cell Bounds and Table Counting
Only 810 tables consistent with marginals \mathcal{R}_{1} !!.

Table: Czeck Autoworkers data from Edwards \& Havranek (1985) (left panel) and bounds given marginals \mathcal{R}_{1} (right panel).

Example: Czech Autoworkers

How to do inference under log-linear models $\mathcal{A}_{1}-\mathcal{A}_{8}$?

Log-linear Model	Minimal Sufficient Statistics
\mathcal{A}_{1}	$\mathcal{R}_{1} \cup\{[B C D E F]\}$
\mathcal{A}_{2}	$\mathcal{R}_{1} \cup\{[A B C E F]\}$
\mathcal{A}_{3}	$\mathcal{R}_{1} \cup\{[A B C D F]\}$
\mathcal{A}_{4}	$\mathcal{R}_{1} \cup\{[B C D E F],[A B C E F]\}$
\mathcal{A}_{5}	$\mathcal{R}_{1} \cup\{[B C D E F],[A B C D F]\}$
\mathcal{A}_{6}	$\mathcal{R}_{1} \cup\{[A B C E F],[A B C D F]\}$
\mathcal{A}_{7}	$\mathcal{R}_{1} \cup\{[B C D E F],[A B C E F],[A B C D F]\}$
\mathcal{A}_{8}	Saturated

Probability Distributions on Spaces of Tables

Let \mathcal{A} log-linear model with parameters θ for Poisson means λ.

At the s-th step of algorithm do:
(1) Simulate $\theta^{(s+1)}$ from $p\left(\theta \mid \mathcal{A}, \mathbf{n}^{(s)}\right) \propto p(\theta \mid \mathcal{A}) p\left(\mathbf{n}^{(s)} \mid \lambda(\theta)\right)$. Compute $\lambda^{(s+1)}=\lambda\left(\theta^{(s+1)}\right)$.
(2) Simulate $\mathbf{n}^{(s+1)}$ from $p\left(\mathbf{n} \mid \mathcal{D}, \lambda^{(s+1)}\right)$.

Independent Gamma (Uniform) priors for λ imply conjugate (truncated) Gamma posteriors (West, 1997; Tebaldi \& West (1998)).

Example: Czech Autoworkers

DATA AUGMENTATION

Figure: Convergence of the data augmentation method for the Czech autoworkers data. The x-axis represents the iteration number on a $\log _{10}$ scale, while the y-axis gives the sample mean of λ_{0} from five starting points under model \mathcal{A}_{8}.

Example: Czech Autoworkers

DATA AUGMENTATION

Figure: Approximate posterior distributions for λ_{0} under the log-linear models $\mathcal{A}_{1}, \ldots, \mathcal{A}_{8}$. The dotted lines represent estimates of the posterior mode and the corresponding 95% confidence intervals.

Next Steps...

(I) Computing exact p-values.
(ii) Methods for sparse tables.

