Algebraic Statistics of p_{1} Network Models: Markov Bases and Their Uses

Stephen E. Fienberg

Department of Statistics and Machine Learning Department Carnegie Mellon University

Joint work with:
Alessandro Rinaldo, Carnegie Mellon University and Sonja Petrović, University of Illinois at Chicago

Algebraic Methods in Machine Learning
NIPS Workshop December 2008

December 11, 2008

Context

Context

- Networks are ubiquitous in science

Context

- Networks are ubiquitous in science
- Network graphs \neq graphical model graphs

Context

- Networks are ubiquitous in science
- Network graphs \neq graphical model graphs
- Statistical models for networks:

Context

- Networks are ubiquitous in science
- Network graphs \neq graphical model graphs
- Statistical models for networks:

New statistical problems (standard asymptotics do not hold-how do we get approximate normality?)

Context

- Networks are ubiquitous in science
- Network graphs \neq graphical model graphs
- Statistical models for networks:

New statistical problems (standard asymptotics do not hold-how do we get approximate normality?)

- p_{1} model, log-linear model, and algebraic statistics:

Context

- Networks are ubiquitous in science
- Network graphs \neq graphical model graphs
- Statistical models for networks:

New statistical problems (standard asymptotics do not hold-how do we get approximate normality?)

- p_{1} model, log-linear model, and algebraic statistics:

Using algebra-geometry structure to "understand" a family of network models and frame a related set of statistical estimation and inference issues.

General framework for networks evolving over time

- Network represented by a graph G_{t} at time t

General framework for networks evolving over time

- Network represented by a graph G_{t} at time t
- Nodes and edges can be created and can die

General framework for networks evolving over time

- Network represented by a graph G_{t} at time t
- Nodes and edges can be created and can die
- Can have multiple relationships; attributes for nodes and/or edges

General framework for networks evolving over time

- Network represented by a graph G_{t} at time t
- Nodes and edges can be created and can die
- Can have multiple relationships; attributes for nodes and/or edges
- Edges can be directed or undirected

General framework for networks evolving over time

- Network represented by a graph G_{t} at time t
- Nodes and edges can be created and can die
- Can have multiple relationships; attributes for nodes and/or edges
- Edges can be directed or undirected
- Data available to be observed at time $t=t_{0}$

General framework for networks evolving over time

- Network represented by a graph G_{t} at time t
- Nodes and edges can be created and can die
- Can have multiple relationships; attributes for nodes and/or edges
- Edges can be directed or undirected
- Data available to be observed at time $t=t_{0}$
- Underlying stochastic process that describes the network structure and evolution.
- Come to my talk on dynamic network modeling this afternoon in Grpahical models Workshop!

Example: The Framingham "Obesity" Study

- Original Framingham "sample" cohort begun in 1947.
- Offspring cohort of $N_{0}=5,124$ individuals measured beginning in 1971 for $T=7$ epochs centered at 1971, 1981, 1985, 1989, 1992, 1997, 1999.
- Link information on family members and one close friend.
- Total number of individuals on whom we have obesity measures is $\mathrm{N}=12,067$.
- Details in Christakis and Fowler, NEJM, July 2007.

Example: The Framingham "Obesity" Study

- Original Framingham "sample" cohort begun in 1947.
- Offspring cohort of $N_{0}=5,124$ individuals measured beginning in 1971 for $T=7$ epochs centered at 1971, 1981, 1985, 1989, 1992, 1997, 1999.
- Link information on family members and one close friend.
- Total number of individuals on whom we have obesity measures is $\mathrm{N}=12,067$.
- Details in Christakis and Fowler, NEJM, July 2007.

Example: The Framingham "Obesity" Study

Figure 1. Largest Connected Subcomponent of the Social Network in the Framingham Heart Study in the Year 2000.
Each circle (node) represents one person in the data set. There are 2200 persons in this subcomponent of the social network. Circles with red borders denote women, and circles with blue borders denote men. The size of each circle is proportional to the person's body-mass index. The interior color of the circles indicates the person's obesity status: yellow denotes an obese person (body-mass index,≥ 30) and green denotes a nonobese person. The colors of the ties between the nodes indicate the relationship between them: purple denotes a friendship or marital tie and orange denotes a familial tie.

Example -The Collective Dynamics of Smoking in a Large Social Network (J.Fowler)

Example: Monks in a Monastery

- 18 novices observed over two years.
- Network data gather at 4 time points; and on multiple relationships..
- See analyses in Airoldi, et al., (2008)

Negative praise

Holland and Leinhardt's p_{1} model

- n nodes, random occurrence of directed edges.

Holland and Leinhardt's p_{1} model

- n nodes, random occurrence of directed edges.
- Describe the probability of an edge occurring between nodes i and j :

Holland and Leinhardt's p_{1} model

- n nodes, random occurrence of directed edges.
- Describe the probability of an edge occurring between nodes i and j :

$$
\log \operatorname{Prob}(\text { no edge })=\log P_{i j}(0,0)=\lambda_{i j}
$$

$$
\log \operatorname{Prob}(\text { from } i \text { to } j)=\log P_{i j}(1,0)=\lambda_{i j}+\alpha_{i}+\beta_{j}+\theta
$$

$$
\log \operatorname{Prob}(\text { from } j \text { to } i)=\log P_{i j}(0,1)=\lambda_{i j}+\alpha_{j}+\beta_{i}+\theta
$$

$$
\log \operatorname{Prob}(\text { bi-directed edge })=\log P_{i j}(1,1)=\lambda_{i j}+\alpha_{i}+\beta_{j}+\alpha_{j}+\beta_{i}+2 \theta+\rho_{i j}
$$

Holland and Leinhardt's p_{1} model

- n nodes, random occurrence of directed edges.
- Describe the probability of an edge occurring between nodes i and j :

$$
\begin{aligned}
& \log \operatorname{Prob}(\text { no edge })=\log P_{i j}(0,0)=\lambda_{i j} \\
& \log \operatorname{Prob}(\text { from } i \text { to } j)=\log P_{i j}(1,0)=\lambda_{i j}+\alpha_{i}+\beta_{j}+\theta \\
& \log \operatorname{Prob}(\text { from } j \text { to } i)=\log P_{i j}(0,1)=\lambda_{i j}+\alpha_{j}+\beta_{i}+\theta \\
& \log \operatorname{Prob}(\text { bi-directed edge })=\log P_{i j}(1,1)=\lambda_{i j}+\alpha_{i}+\beta_{j}+\alpha_{j}+\beta_{i}+2 \theta+\rho_{i j}
\end{aligned}
$$

- 3 common forms:

$$
\begin{aligned}
& \rho_{i j}=0 \text { (no reciprocal effect) } \\
& \rho_{i j}=\rho \text { (constant reciprocation factor) } \\
& \rho_{i j}=\rho+\rho_{i}+\rho_{j} \text { (edge-dependent reciprocation) }
\end{aligned}
$$

Estimation for p_{1}

- The likelihood function for the p_{1} model is clearly of exponential family form.
- For the constant reciprocation version, we have

$$
\begin{equation*}
\log p_{1}(x) \propto x_{++} \theta+\sum_{i} x_{i+} \alpha_{i}+\sum_{j} x_{+} j \beta_{j}+\sum_{i j} x_{i j} x_{j i} \rho \tag{1}
\end{equation*}
$$

- Holland-Leinhardt explored goodness of fit of model empirically.
- They compared $\rho_{i j}=0$ vs. $\rho_{i j}=\rho$.
- The problem is that standard asymptotics (normality and chi-sqare tests of fit) are not applicable as the number of parameters increases with the number of nodes.
- How to test $\rho_{i j}=\rho$ against a more complex model?

Aside—The Normal Distribution was 275 Years Old on November 12, 2008!

Nos. 12. 1733-

APPROXIMATIO AD

Summam Terminorum binomil

$\overline{a+b^{n}}$ in Seriem expanfi, Autore A. D. M. R. S. S.

QUasquam folotio Problematum ad fortem fpetantium noo raro cxigit ut plures Temini Binomii $\overline{4+2}{ }^{2}$ in fummam coliganeur; attrnen in poecharibas excelfis res aleo laboriofa videtur, ve perproci hoc opus aggredi curverint; Yacdur \& Nialass Brmuli viri Doatifinisi primi quod fiam tenturunt quid fas induftris in boce genere prexAtare polfe, in quo etiamfi uterque propofium famma cum lavede iti affecuta, aliquid umen uler pocef requiri, hoceff approxinutio ad fommum ; nonenim um de approximatione videntur fuiffe folliciti quam de aflgnandis certis limitibus quos Somens Teminormen neceffrio traffenderet, Quam veto viam ill tenverint, breviter in Mififelaneis meis expofid * que confolat Letor fiv veat, quod ipfí tamen feripferios meliua errit forutik cooffilere: Ego quoque in hanc difquifitionem incubui; quod sutem eo me primum inpelit non profeetum fuit th opinione me crteros anteiurum, fed ab obl:quio in Dignifimum virum qui milh netor fuerat ut hrc fucciperem; Quicquid eft, noves cogitationes prioribus fiboeeto, fed ed ut conserio potremoram cum primis melius sppurcat, milit necelfe eff ut paca jampriden a me tradita denso proferam.

1. Doodecim jum fast ansi \& amplias cum illad inveseram ; fif Binomium $1+1$ ad pouflatem n promagam nuollavor, ratio quam 'Temiona Medies habet ad fomman Termicorum omnien, boc efl ad 2^{*}, ad huoc modum poctrit exprimi $\frac{A x=1}{8}$,

A curn bamerumexponit cujas Logn

- Vies Mícillenca Analytica pere of
[2]
rithmus bypertolicu eft $\frac{1}{12}-\frac{1}{150}+\frac{1}{1350}-\frac{1}{1650}$ \&ce. quam feriem

fere data fit, quod confideranti farile preebit, fequirur in Poecithet infinita quantiatem illam darum iri, eamque exhibiarumm nomerum illaun cujus Logarithmas hyperbolicus eft -1; hinc feet ut fif B detignarit numerum illum cujus Logarichmus byperbolies eft $-1+\frac{1}{12}-\frac{1}{300}+\frac{1}{1250}-\frac{1}{1050}$
 Seriei mutenour, ponaturque B xqualis numerocujus Logarithmus hyperbolicus eft $1-\frac{1}{12}+\frac{1}{j 50}-\frac{1}{1300}+\frac{1}{100_{0}}$ Sc. expreflio ill furura fit $\frac{1}{B \sqrt{3}}$.

Cum primum ad haso dilquifitionem animam appali, eo contentas fui ut prater propter valorem quastiutis B determinarem quod quidem fis Aum fierat additione paucorum bujas feriei Termisorum, quorum fumms fpeetaus foerat unguam Logarithmes iftios quantiatis, attamen uarditas convergentia me deterruerat quominu loogies procederem, donec vir DoAiffumus mihique aniciflamss yondas Strinay qui pot me ad hane difquifirionem methodo a mea valde diverfa fe costali, comperit quantiatem B denocare radicem quadratam circomierentiz Ciredi cejos ralus eft unitus, ita ut fi hacc circumétentia appelletur c, ratio Medii Termini ad Terninos omoes exprimetur per $\frac{1}{\sqrt{x}}$.
Quanquam vero, fil quacuugue ratiooe poffic obcineri is sumerus quil fenei hyperbolke relponder, don malrum interiit utrum sec se ejus relatio ad Circulum peripecta fuerih, attames hibeater fateor hanc patefationem et Lubori peperciffe, et elegnotian Jingolurem is folutionem isduxiffe.
IL. Id mihh funul compertum fuic; Loganithmem rationis, quam in Potelture maxima, Medias Terminus babet ad Terminum intervalo / a Medio diflantem, polit $s=: m$, fic expreflum ith,
$\overline{\pi+1-i \times} \log \cdot \overline{x+i-1}+\overline{\pi-1+i} \times \log \overline{n-1+2}=2 \log , m+\log \cdot \frac{n+1}{n}$

COROLLARIUMI.
Hinc mihi illud colligere licet; fif fit mquantits infinite magaz, Logarithmum hujus rationis fore $\frac{d}{7}$ five $\frac{3 /}{\pi}$, ergo Logarithmas rationis quam Terminus a Medio ditans Intervallo /habet ad Medium êt $-\frac{\mathrm{th}}{*}$.

Hotelling and the Normal Distribution

Harold Hotelling, the "Normal Statistician", 1946

Display courtesy of Stephen Stigler.

p_{1} in Log-linear Form

- Probabilities for four situations between two nodes:
- Define

$$
y_{i j k l}= \begin{cases}1 & \text { if } D\left(x_{i j}, x_{j i}\right)=(k, l) \\ 0 & \text { otherwise }\end{cases}
$$

- Yields an $n \times n \times 2 \times 2$ 4-way array with "zeros" for $n \times n$ diagonals.
- Fienberg and Wasserman demonstrated that in the 4-way table, the log-linear model of no second-order interaction corresponds to p_{1} with constant reciprocation, i.e., [12][13][14][23][24][34], and that the standard iterative proportional fitting algorithm.
- Edge-dependent reciprocation corresponds to log-linear model [12][134][234].

Primer: Algebraic Representation and Computer Algebra Tools

- Log-linear models are represented by polynomial maps and parameter space is toric variety.
- Multinomial likelihood is a monomial.
- Fiber consists of all tables with margins t.
- Markov basis generates fiber and consists of minimal generators of toric ideal.
- Computer algebra tools:
- 4ti2
- We use 4 ti2 to generate basis elements (perhaps redundant) for Markov bases for specific values of n. Can use these to compute exact distribution given the MSSs.
- Polymake—Examines fiber for MLE existence.
- We use Polymake to explore conditions for MLEs to exist, as in example for $\rho_{i j}=0$. Affects computation and assessment of fit.

Algebraic Version of p_{1} in Log-linear Form

Algebraic Version of p_{1} in Log-linear Form

- For each pair of nodes i and j we have a monomial in the model parameters:

Algebraic Version of p_{1} in Log-linear Form

- For each pair of nodes i and j we have a monomial in the model parameters:
$p_{i j}(a, b) \mapsto \lambda_{i j} \alpha_{i}^{a} \alpha_{j}^{b} \beta_{i}^{b} \beta_{j}^{a} \theta^{a+b} \rho_{i j}^{\min (a, b)}$ for all $i<j \in\{1, \ldots, n\}$

p_{1} as a toric variety

- The monomial map parametrizes a toric variety:

p_{1} as a toric variety

- The monomial map parametrizes a toric variety:
- the design matrix has $4\binom{n}{2}$ columns (variables)

p_{1} as a toric variety

- The monomial map parametrizes a toric variety:
- the design matrix has $4\binom{n}{2}$ columns (variables)
- and $3\binom{n}{2}+1$, or $3\binom{n}{2}+2$, or $4\binom{n}{2}+2$ rows (parameters) depending on reciprocation

p_{1} as a toric variety

- The monomial map parametrizes a toric variety:
- the design matrix has $4\binom{n}{2}$ columns (variables)
- and $3\binom{n}{2}+1$, or $3\binom{n}{2}+2$, or $4\binom{n}{2}+2$ rows (parameters) depending on reciprocation
- For example, $n=3$ and $\rho_{i j}$ edge-dependent, the variety is a degree-3 hypersurface in \mathbb{P}^{11}.

p_{1} as a toric variety

- The monomial map parametrizes a toric variety:
- the design matrix has $4\binom{n}{2}$ columns (variables)
- and $3\binom{n}{2}+1$, or $3\binom{n}{2}+2$, or $4\binom{n}{2}+2$ rows (parameters) depending on reciprocation
- For example, $n=3$ and $\rho_{i j}$ edge-dependent, the variety is a degree-3 hypersurface in \mathbb{P}^{11}.
- Its defining ideal gives Markov basis,

p_{1} as a toric variety

- The monomial map parametrizes a toric variety:
- the design matrix has $4\binom{n}{2}$ columns (variables)
- and $3\binom{n}{2}+1$, or $3\binom{n}{2}+2$, or $4\binom{n}{2}+2$ rows (parameters) depending on reciprocation
- For example, $n=3$ and $\rho_{i j}$ edge-dependent, the variety is a degree-3 hypersurface in \mathbb{P}^{11}.
- Its defining ideal gives Markov basis,
- it will connect all networks with the same sufficient statistics.

Toric ideal of simplification of p_{1}

By ignoring the normalizing constants $\lambda_{i j}$ we get a simplified model

Toric ideal of simplification of p_{1}

By ignoring the normalizing constants $\lambda_{i j}$ we get a simplified model

Theorem (FPR)
If $\rho_{i j}=0$, the ideal of the simplified model equals $I_{G_{n}}+T_{n}$ where T_{n} is generated by $p_{i j}(1,0) p_{i j}(0,1)-p_{i j}(1,1)$ and $I_{G_{n}}$ is the toric ideal of the edge subring of $G_{n}:=K_{n, n} \backslash\{i, i\}$.

Toric ideal of simplification of p_{1}

By ignoring the normalizing constants $\lambda_{i j}$ we get a simplified model

Theorem (FPR)
If $\rho_{i j}=0$, the ideal of the simplified model equals $I_{G_{n}}+T_{n}$ where T_{n} is generated by $p_{i j}(1,0) p_{i j}(0,1)-p_{i j}(1,1)$ and $I_{G_{n}}$ is the toric ideal of the edge subring of $G_{n}:=K_{n, n} \backslash\{i, i\}$.

Theorem (FPR)

If $\rho_{i j}=\rho+\rho_{i}+\rho_{j}$, the ideal of the simplified model equals $I_{G_{n}}+Q_{n}$ where $I_{G_{n}}$ is as above, and Q_{n} is the toric ideal of the edge subring of K_{n}.

Main Theorem - toric ideal of p_{1}

- Upshot: known Graver bases for edge subrings!

Main Theorem - toric ideal of p_{1}

- Upshot: known Graver bases for edge subrings!
- We now incorporate $\lambda_{i j}$ into the previous theorems:

Main Theorem - toric ideal of p_{1}

- Upshot: known Graver bases for edge subrings!
- We now incorporate $\lambda_{i j}$ into the previous theorems:

Theorem (FPR)

The toric ideal of the p_{1} random graph model is the multi-homogenous piece of the toric ideal of a simplified model.

By multi-homogeneous, we mean with respect to each pair i, j.

Main Theorem - toric ideal of p_{1}

- Upshot: known Graver bases for edge subrings!
- We now incorporate $\lambda_{i j}$ into the previous theorems:

Theorem (FPR)

The toric ideal of the p_{1} random graph model is the multi-homogenous piece of the toric ideal of a simplified model.

By multi-homogeneous, we mean with respect to each pair i, j.

- In progress: Markov moves for all three cases of $\rho_{i j}$.

Example with 4 nodes

Figure: A degree-5 binomial

Example with 4 nodes

Figure: A degree-5 binomial

Figure: the corresponding path in $K_{4,4} \backslash\{i, i\}$

3-node network

For all 3 cases of $\rho_{i j}$, there is only one Markov move:

3-node network

For all 3 cases of $\rho_{i j}$, there is only one Markov move:

Figure: A binomial of degree 3

3-node network

For all 3 cases of $\rho_{i j}$, there is only one Markov move:

Figure: A binomial of degree 3
representing the binomial:

$$
p_{12}(1,0) p_{23}(1,0) p_{13}(0,1)-p_{12}(0,1) p_{23}(0,1) p_{13}(1,0) .
$$

3-node network

For all 3 cases of $\rho_{i j}$, there is only one Markov move:

Figure: A binomial of degree 3
representing the binomial:

$$
p_{12}(1,0) p_{23}(1,0) p_{13}(0,1)-p_{12}(0,1) p_{23}(0,1) p_{13}(1,0) .
$$

The corresponding Markov move is to remove edges $1 \rightarrow 2,2 \rightarrow 3$ and $3 \rightarrow 1$, and replace them by the same edges oriented in the opposite direction.

4-node network, $\rho_{i j}$ constant

- Reminder: $\rho_{i j}=\rho$, including $\rho_{i j}=0$.

4-node network, $\rho_{i j}$ constant

Figure: A binomial of degree 3

4-node network, $\rho_{i j}$ constant

Figure: A binomial of degree 3

Figure: A binomial of degree 4

4-node network, $\rho_{i j}$ Constant

Figure: A more complicated binomial of degree 4

4-node network, $\rho_{i j}$ Constant

Figure: A more complicated binomial of degree 4
represents

$$
p_{i j}(0,0) p_{j k}(1,1) p_{k l}(0,1) p_{i l}(1,0)-p_{i j}(1,0) p_{j k}(1,0) p_{k l}(1,1) p_{i l}(0,0)
$$

4-node network, $\rho_{i j}$ Constant

Figure: A more complicated binomial of degree 4
represents

$$
p_{i j}(0,0) p_{j k}(1,1) p_{k l}(0,1) p_{i l}(1,0)-p_{i j}(1,0) p_{j k}(1,0) p_{k l}(1,1) p_{i l}(0,0)
$$

- The moves come in degrees $3,4,5,6$.

4-node network, $\rho_{i j}$ edge-dependent

Reminder: $\rho_{i j}=\rho+\rho_{i}+\rho_{j}$.

4-node network, $\rho_{i j}$ edge-dependent

Reminder: $\rho_{i j}=\rho+\rho_{i}+\rho_{j}$.
What follows is a list of all possible moves on a 4-node network, with respect to symmetry of course.

4-node network, $\rho_{i j}$ edge-dependent

Figure: A binomial of degree 3

4-node network, $\rho_{i j}$ edge-dependent

Figure: A binomial of degree 3

Figure: A binomial of degree 4

4-node Network, $\rho_{i j}$ edge-dependent

Figure: A binomial of degree 4

4-node Network, $\rho_{i j}$ edge-dependent

Figure: A binomial of degree 4

Figure: A binomial of degree 4

4-node network, $\rho_{i j}$ edge-dependent

Figure: A binomial of degree 4

4-node network, $\rho_{i j}$ edge-dependent

Figure: A binomial of degree 4

Figure: A binomial of degree 5

4-node network, $\rho_{i j}$ edge-dependent

Figure: A binomial of degree 5

4-node network, $\rho_{i j}$ edge-dependent

Figure: A binomial of degree 5

Figure: A binomial of degree 6

Summary

- Graphs and network models.
- p_{1} and its algebraic representation:
- Reviewed of p_{1} and log-linear models.
- Developed Markov bases.
- Markov bases and proposed uses:
- Existence of MLE.
- Generate exact distribution for p_{1} and use for assessing goodness-of-fit.
- Future work includes:
- Completing algebraic characterization of p_{1} models and putting them to use.
- Generalizations to exponential random graph models (ERGM) models [also known as p^{*} models]:
- Many complex statistical issues including existence of MLEs (non-existence $=$ degeneracies involving zero estimates) and near-degeneracies.
- Scaling tools up to be of use for analysis large networks with efficient computation.
... The End ...

