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Introduction Outline

Context

@ Networks are ubiquitous in science

@ Network graphs # graphical model graphs
@ Statistical models for networks:

New statistical problems (standard asymptotics do not hold—how do
we get approximate normality?)

@ p; model, log-linear model, and algebraic statistics:

Using algebra-geometry structure to “understand” a family of network
models and frame a related set of statistical estimation and inference
issues.
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General framework for networks evolving over time

o Network represented by a graph G; at time t
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General framework for networks evolving over time

o Network represented by a graph G; at time t

@ Nodes and edges can be created and can die

e Can have multiple relationships; attributes for nodes and/or edges
@ Edges can be directed or undirected

@ Data available to be observed at time t = tg

o Underlying stochastic process that describes the network structure
and evolution.

e Come to my talk on dynamic network modeling this afternoon in
Grpahical models Workshop!
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Example: The Framingham “Obesity” Study

@ Original Framingham “sample” cohort begun in 1947.

o Offspring cohort of Ny = 5,124 individuals measured beginning in
1971 for T = 7 epochs centered at 1971, 1981, 1985, 1989, 1992,
1997, 1999.

@ Link information on family members and one close friend.

@ Total number of individuals on whom we have obesity measures is
N=12,067.

@ Details in Christakis and Fowler, NEJM, July 2007.
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Beet egaui
Example: The Framingham “Obesity” Study

Figure 1. Largest Connected Subcomponent of the Social Network in the Framingham Heart Study in the Year 2000.
Each circle (node) represents one person in the data set. There are 2200 persons in this subcomponent of the social
network. Circles with red borders denote women, and circles with blue borders denote men. The size of each circle
is proportional to the person’s body-mass index. The interior color of the circles indicates the person’s obesity status:
yellow denotes an obese person (body-mass index, =30) and green denotes a nonobese person. The colors of the
ties between the nodes indicate the relationship between them: purple denotes a friendship or marital tie and orange
denotes a familial tie.
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Introduction Background

Example -The Collective Dynamics of Smoking in a Large
Social Network (J.Fowler)
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Introduction Background

Example: Monks in a Monastery

@ 18 novices observed over two years.

@ Network data gather at 4 time points; and on multiple relationships..
@ See analyses in Airoldi, et al., (2008)
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Holland and Leinhardt's p; model

@ n nodes, random occurrence of directed edges.
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Holland and Leinhardt's p; model

@ n nodes, random occurrence of directed edges.
@ Describe the probability of an edge occurring between nodes / and j:

log Prob(no edge) = log P;j(0,0) = Aj

log Prob(from i to j) = log Pj;(1,0) = A\jj + a; + 8j + 6

log Prob(from j to i) = log P;j(0,1) = A\jj + oj + B; + 6
(bi

log Prob(bi-directed edge) = log Pjj(1,1) = Aj+a;i+58j+aj+B8i+20+pj;
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Holland and Leinhardt's p; model

@ n nodes, random occurrence of directed edges.
@ Describe the probability of an edge occurring between nodes / and j:

log Prob(no edge) = log P;j(0,0) = Aj

log Prob(from i to j) = log Pj;(1,0) = A\jj + a; + 8j + 6

log Prob(from j to i) = log P;j(0,1) = A\jj + oj + B; + 6
(bi

log Prob(bi-directed edge) = log Pjj(1,1) = Aj+a;i+58j+aj+B8i+20+pj;

@ 3 common forms:

pij = 0 (no reciprocal effect)
pij = p (constant reciprocation factor)
pij = p+ pi + pj (edge-dependent reciprocation)
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Estimation for p;

@ The likelihood function for the p; model is clearly of exponential
family form.

@ For the constant reciprocation version, we have

log p1(x) < x4 0+ > xivei + Y x i+ > xixip (1)
i J ij

@ Holland-Leinhardt explored goodness of fit of model empirically.

o They compared p; = 0 vs. p; = p.

o The problem is that standard asymptotics (normality and chi-sqare
tests of fit) are not applicable as the number of parameters increases
with the number of nodes.

o How to test p;; = p against a more complex model?
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The p; model History

Aside—The Normal Distribution was 275 Years Old on

November 12, 2008!
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Hotelling and the Normal Distribution

Harold Hotelling, the “Normal Statistician”, 1946

Display courtesy of Stephen Stigler.
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p1 in Log-linear Form

Probabilities for four situations between two nodes:
Define
1 if D(xy,xi) = (k,1),
Yijkl = .
0 otherwise.

@ Yields an n x n x 2 x 2 4-way array with “zeros” for n x n diagonals.

Fienberg and Wasserman demonstrated that in the 4-way table, the
log-linear model of no second-order interaction corresponds to p; with
constant reciprocation, i.e., [12][13][14][23][24][34], and that the
standard iterative proportional fitting algorithm.

Edge-dependent reciprocation corresponds to log-linear model
[12][134][234].
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Primer: Algebraic Representation and Computer Algebra
Tools

@ Log-linear models are represented by polynomial maps and parameter
space is toric variety.

@ Multinomial likelihood is a monomial.
@ Fiber consists of all tables with margins t.

@ Markov basis generates fiber and consists of minimal generators of
toric ideal.
o Computer algebra tools:
o 4ti2
o We use 4ti2 to generate basis elements (perhaps redundant) for Markov

bases for specific values of n. Can use these to compute exact
distribution given the MSSs.

o Polymake—Examines fiber for MLE existence.

@ We use Polymake to explore conditions for MLEs to exist, as in
example for p;j = 0. Affects computation and assessment of fit.
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Algliere Sizisies
Algebraic Version of p; in Log-linear Form
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Algliere Sizisies
Algebraic Version of p; in Log-linear Form
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@ For each pair of nodes i and j we have a monomial in the model
parameters:
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Algliere Sizisies
Algebraic Version of p; in Log-linear Form
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@ For each pair of nodes i and j we have a monomial in the model
parameters:

pi(a, b) > AjagabBPpoatopT ) for all j < j e {1,...,n}
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p1 as a toric variety

@ The monomial map parametrizes a toric variety:
o the design matrix has 4(5) columns (variables)

e and 3(5) + 1, or 3(5) + 2, or 4(5) + 2 rows (parameters)
depending on reciprocation

@ For example, n = 3 and p;; edge-dependent, the variety is a degree-3
hypersurface in P11,

@ lts defining ideal gives Markov basis,

@ it will connect all networks with the same sufficient statistics.
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Toric ideal of simplification of p;

By ignoring the normalizing constants \j; we get a simplified model
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LSRNl  Theoretical results

Toric ideal of simplification of p;

By ignoring the normalizing constants \j; we get a simplified model

Theorem (FPR)

If pij = 0, the ideal of the simplified model equals I, + T,
where T, is generated by p;;(1,0)p;;(0,1) — p;(1,1)
and Ig, is the toric ideal of the edge subring of G, := Kpn\{i,i}.
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LSRNl  Theoretical results

Toric ideal of simplification of p;

By ignoring the normalizing constants \j; we get a simplified model

Theorem (FPR)

If pij = 0, the ideal of the simplified model equals I, + T,
where T, is generated by p;;(1,0)p;;(0,1) — p;(1,1)

and Ig, is the toric ideal of the edge subring of G, := Kpn\{i,i}.

Theorem (FPR)

If pij = p+ pi + pj, the ideal of the simplified model equals I, + Qn
where Ig, is as above,

and Q, is the toric ideal of the edge subring of K,,.
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Main Theorem - toric ideal of p;

@ Upshot: known Graver bases for edge subrings!
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LSRNl  Theoretical results

Main Theorem - toric ideal of p;

@ Upshot: known Graver bases for edge subrings!

@ We now incorporate A into the previous theorems:

Theorem (FPR)

The toric ideal of the p1 random graph model is the multi-homogenous
piece of the toric ideal of a simplified model.

By multi-homogeneous, we mean with respect to each pair i, j.
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LSRNl  Theoretical results

Main Theorem - toric ideal of p;

@ Upshot: known Graver bases for edge subrings!

@ We now incorporate A into the previous theorems:

Theorem (FPR)

The toric ideal of the p1 random graph model is the multi-homogenous
piece of the toric ideal of a simplified model.

By multi-homogeneous, we mean with respect to each pair i, j.

@ In progress: Markov moves for all three cases of pj;.
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Algebraic Viewpoint Example

Example with 4 nodes

R 1
(0~
L\——l 9 3

Figure: A degree-5 binomial
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Algebraic Viewpoint Example

Example with 4 nodes

R 1
(0~
L\——E 9 3

Figure: A degree-5 binomial

My Hdy dy

S T T
Figure: the corresponding path in K s\{/,i}
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3-node network

For all 3 cases of pj;, there is only one Markov move:
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Summary of Markov Moves

3-node network

For all 3 cases of pj;, there is only one Markov move:

L 2
SN~ SN
NS 3 o

Figure: A binomial of degree 3
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Summary of Markov Moves

3-node network

For all 3 cases of pj;, there is only one Markov move:

'\Z:;B’s N 4&3

Figure: A binomial of degree 3

representing the binomial:

p12(1,0)p23(1,0)p13(0, 1) — p12(0,1)p23(0,1)p13(1,0).
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Summary of Markov Moves

3-node network

For all 3 cases of pj;, there is only one Markov move:

L 2
A \\1 . / \
A S— 3 A ey, ¢
Figure: A binomial of degree 3
representing the binomial:
p12(1,0)p23(1,0)p13(0,1) — p12(0, 1) p23(0, 1) p13(1, 0).

The corresponding Markov move is to remove edges 1 — 2, 2 — 3
and 3 — 1, and replace them by the same edges oriented in the
opposite direction.
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4-node network, p;; constant

@ Reminder: p;; = p, including p;; = 0.
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4-node network, p;; constant
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Figure: A binomial of degree 3
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4-node network, p;; constant
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Figure: A binomial of degree 3
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Figure: A binomial of degree 4
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4-node network, p;; Constant

frp i
e Uil

Figure: A more complicated binomial of degree 4
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4-node network, p;; Constant

& Pl 1 A
e S )
\L e A
\
I
{==a Gzl
Figure: A more complicated binomial of degree 4

represents

pij(0,0)pj (1, 1)pui(0, 1)pi(1,0) — p;(1,0)pjx(1,0)pr(1, 1)pi(0,0)
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4-node network, p;; Constant

& Pl 1 A
=== S )
\L e A
\
I
¢ (= 1
Figure: A more complicated binomial of degree 4
represents

pij(0,0)pj (1, 1)pui(0, 1)pi(1,0) — p;(1,0)pjx(1,0)pr(1, 1)pi(0,0)

@ The moves come in degrees 3,4,5,6.
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4-node network, p;; edge-dependent

Reminder: p;jj = p+ pi + pj.
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Summary of Markov Moves

4-node network, p;; edge-dependent
Reminder: p;jj = p+ pi + pj.

What follows is a list of all possible moves on a 4-node network, with
respect to symmetry of course.
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4-node network, p;; edge-dependent
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Figure: A binomial of degree 3
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4-node network, p;; edge-dependent
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Figure: A binomial of degree 3
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Figure: A binomial of degree 4
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4-node Network, p;; edge-dependent
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Figure: A binomial of degree 4
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4-node Network, p;; edge-dependent
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Figure: A binomial of degree 4
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Figure: A binomial of degree 4
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4-node network, p;; edge-dependent
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Figure: A binomial of degree 4

Stephen E. Fienberg (CMU) Markov Bases of p; Models December 11, 2008 25 /28



4-node network, p;; edge-dependent
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Figure: A binomial of degree 4
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Figure: A binomial of degree 5
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4-node network, p;; edge-dependent
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Figure: A binomial of degree 5
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4-node network, p;; edge-dependent
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Figure: A binomial of degree 5
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Figure: A binomial of degree 6
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Summary

@ Graphs and network models.
@ p; and its algebraic representation:
e Reviewed of p; and log-linear models.
e Developed Markov bases.
@ Markov bases and proposed uses:
o Existence of MLE.
o Generate exact distribution for p; and use for assessing goodness-of-fit.
o Future work includes:
o Completing algebraic characterization of p; models and putting them

to use.
o Generalizations to exponential random graph models (ERGM) models

[also known as p* models]:
o Many complex statistical issues including existence of MLEs
(non-existence = degeneracies involving zero estimates) and

near-degeneracies.
@ Scaling tools up to be of use for analysis large networks with efficient

computation.
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Summary

... The End ...
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