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Introduction Outline

Context

Networks are ubiquitous in science

Network graphs 6= graphical model graphs

Statistical models for networks:

New statistical problems (standard asymptotics do not hold—how do
we get approximate normality?)

p1 model, log-linear model, and algebraic statistics:

Using algebra-geometry structure to “understand” a family of network
models and frame a related set of statistical estimation and inference
issues.
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Introduction Background

General framework for networks evolving over time

Network represented by a graph Gt at time t

Nodes and edges can be created and can die

Can have multiple relationships; attributes for nodes and/or edges

Edges can be directed or undirected

Data available to be observed at time t = t0

Underlying stochastic process that describes the network structure
and evolution.

Come to my talk on dynamic network modeling this afternoon in
Grpahical models Workshop!
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Introduction Background

Example: The Framingham “Obesity” Study

Original Framingham “sample” cohort begun in 1947.

Offspring cohort of N0 = 5, 124 individuals measured beginning in
1971 for T = 7 epochs centered at 1971, 1981, 1985, 1989, 1992,
1997, 1999.

Link information on family members and one close friend.

Total number of individuals on whom we have obesity measures is
N=12,067.

Details in Christakis and Fowler, NEJM, July 2007.
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Introduction Background

Example: The Framingham “Obesity” Study
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Introduction Background

Example -The Collective Dynamics of Smoking in a Large
Social Network (J.Fowler)
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Introduction Background

Example: Monks in a Monastery

18 novices observed over two years.

Network data gather at 4 time points; and on multiple relationships..

See analyses in Airoldi, et al., (2008)
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The p1 model History

Holland and Leinhardt’s p1 model

n nodes, random occurrence of directed edges.

Describe the probability of an edge occurring between nodes i and j :

log Prob(no edge) = log Pij(0, 0) = λij

log Prob(from i to j) = log Pij(1, 0) = λij + αi + βj + θ

log Prob(from j to i) = log Pij(0, 1) = λij + αj + βi + θ

log Prob(bi-directed edge) = log Pij(1, 1) = λij +αi +βj +αj +βi +2θ+ρij

3 common forms:

ρij = 0 (no reciprocal effect)
ρij = ρ (constant reciprocation factor)
ρij = ρ+ ρi + ρj (edge-dependent reciprocation)
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The p1 model History

Estimation for p1

The likelihood function for the p1 model is clearly of exponential
family form.

For the constant reciprocation version, we have

log p1(x) ∝ x++θ +
∑

i

xi+αi +
∑

j

x+jβj +
∑
ij

xijxjiρ (1)

Holland-Leinhardt explored goodness of fit of model empirically.

They compared ρij = 0 vs. ρij = ρ.
The problem is that standard asymptotics (normality and chi-sqare
tests of fit) are not applicable as the number of parameters increases
with the number of nodes.
How to test ρij = ρ against a more complex model?
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The p1 model History

Aside—The Normal Distribution was 275 Years Old on
November 12, 2008!
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The p1 model History

Hotelling and the Normal Distribution

Display courtesy of Stephen Stigler.
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The p1 model Algebraic Statistics

p1 in Log-linear Form

Probabilities for four situations between two nodes:

Define

yijkl =

{
1 if D(xij , xji ) = (k , l),

0 otherwise.

Yields an n × n × 2× 2 4-way array with “zeros” for n × n diagonals.

Fienberg and Wasserman demonstrated that in the 4-way table, the
log-linear model of no second-order interaction corresponds to p1 with
constant reciprocation, i.e., [12][13][14][23][24][34], and that the
standard iterative proportional fitting algorithm.

Edge-dependent reciprocation corresponds to log-linear model
[12][134][234].
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The p1 model Algebraic Statistics

Primer: Algebraic Representation and Computer Algebra
Tools

Log-linear models are represented by polynomial maps and parameter
space is toric variety.

Multinomial likelihood is a monomial.

Fiber consists of all tables with margins t.

Markov basis generates fiber and consists of minimal generators of
toric ideal.

Computer algebra tools:
4ti2

We use 4ti2 to generate basis elements (perhaps redundant) for Markov
bases for specific values of n. Can use these to compute exact
distribution given the MSSs.

Polymake—Examines fiber for MLE existence.

We use Polymake to explore conditions for MLEs to exist, as in
example for ρij = 0. Affects computation and assessment of fit.
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The p1 model Algebraic Statistics

Algebraic Version of p1 in Log-linear Form

For each pair of nodes i and j we have a monomial in the model
parameters:

pij(a, b) 7→ λijα
a
i α

b
j β

b
i β

a
j θ

a+bρ
min(a,b)
ij for all i < j ∈ {1, . . . , n}
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The p1 model Algebraic Statistics

p1 as a toric variety

The monomial map parametrizes a toric variety:

the design matrix has 4
(
n
2

)
columns (variables)

and 3
(
n
2

)
+ 1, or 3

(
n
2

)
+ 2, or 4

(
n
2

)
+ 2 rows (parameters)

depending on reciprocation

For example, n = 3 and ρij edge-dependent, the variety is a degree-3
hypersurface in P11.

Its defining ideal gives Markov basis,

it will connect all networks with the same sufficient statistics.

Stephen E. Fienberg (CMU) Markov Bases of p1 Models December 11, 2008 16 / 28



The p1 model Algebraic Statistics

p1 as a toric variety

The monomial map parametrizes a toric variety:

the design matrix has 4
(
n
2

)
columns (variables)

and 3
(
n
2

)
+ 1, or 3

(
n
2

)
+ 2, or 4

(
n
2

)
+ 2 rows (parameters)

depending on reciprocation

For example, n = 3 and ρij edge-dependent, the variety is a degree-3
hypersurface in P11.

Its defining ideal gives Markov basis,

it will connect all networks with the same sufficient statistics.

Stephen E. Fienberg (CMU) Markov Bases of p1 Models December 11, 2008 16 / 28



The p1 model Algebraic Statistics

p1 as a toric variety

The monomial map parametrizes a toric variety:

the design matrix has 4
(
n
2

)
columns (variables)

and 3
(
n
2

)
+ 1, or 3

(
n
2

)
+ 2, or 4

(
n
2

)
+ 2 rows (parameters)

depending on reciprocation

For example, n = 3 and ρij edge-dependent, the variety is a degree-3
hypersurface in P11.

Its defining ideal gives Markov basis,

it will connect all networks with the same sufficient statistics.

Stephen E. Fienberg (CMU) Markov Bases of p1 Models December 11, 2008 16 / 28



The p1 model Algebraic Statistics

p1 as a toric variety

The monomial map parametrizes a toric variety:

the design matrix has 4
(
n
2

)
columns (variables)

and 3
(
n
2

)
+ 1, or 3

(
n
2

)
+ 2, or 4

(
n
2

)
+ 2 rows (parameters)

depending on reciprocation

For example, n = 3 and ρij edge-dependent, the variety is a degree-3
hypersurface in P11.

Its defining ideal gives Markov basis,

it will connect all networks with the same sufficient statistics.

Stephen E. Fienberg (CMU) Markov Bases of p1 Models December 11, 2008 16 / 28



The p1 model Algebraic Statistics

p1 as a toric variety

The monomial map parametrizes a toric variety:

the design matrix has 4
(
n
2

)
columns (variables)

and 3
(
n
2

)
+ 1, or 3

(
n
2

)
+ 2, or 4

(
n
2

)
+ 2 rows (parameters)

depending on reciprocation

For example, n = 3 and ρij edge-dependent, the variety is a degree-3
hypersurface in P11.

Its defining ideal gives Markov basis,

it will connect all networks with the same sufficient statistics.

Stephen E. Fienberg (CMU) Markov Bases of p1 Models December 11, 2008 16 / 28



The p1 model Algebraic Statistics

p1 as a toric variety

The monomial map parametrizes a toric variety:

the design matrix has 4
(
n
2

)
columns (variables)

and 3
(
n
2

)
+ 1, or 3

(
n
2

)
+ 2, or 4

(
n
2

)
+ 2 rows (parameters)

depending on reciprocation

For example, n = 3 and ρij edge-dependent, the variety is a degree-3
hypersurface in P11.

Its defining ideal gives Markov basis,

it will connect all networks with the same sufficient statistics.

Stephen E. Fienberg (CMU) Markov Bases of p1 Models December 11, 2008 16 / 28



Algebraic Viewpoint Theoretical results

Toric ideal of simplification of p1

By ignoring the normalizing constants λij we get a simplified model

Theorem (FPR)

If ρij = 0, the ideal of the simplified model equals IGn + Tn

where Tn is generated by pij(1, 0)pij(0, 1)− pij(1, 1)
and IGn is the toric ideal of the edge subring of Gn := Kn,n\{i , i}.

Theorem (FPR)

If ρij = ρ+ ρi + ρj , the ideal of the simplified model equals IGn + Qn

where IGn is as above,
and Qn is the toric ideal of the edge subring of Kn.
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Algebraic Viewpoint Theoretical results

Main Theorem - toric ideal of p1

Upshot: known Graver bases for edge subrings!

We now incorporate λij into the previous theorems:

Theorem (FPR)

The toric ideal of the p1 random graph model is the multi-homogenous
piece of the toric ideal of a simplified model.

By multi-homogeneous, we mean with respect to each pair i , j .

In progress: Markov moves for all three cases of ρij .
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Algebraic Viewpoint Example

Example with 4 nodes

Figure: A degree-5 binomial

Figure: the corresponding path in K4,4\{i , i}
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Summary of Markov Moves

3-node network

For all 3 cases of ρij , there is only one Markov move:

Figure: A binomial of degree 3

representing the binomial:

p12(1, 0)p23(1, 0)p13(0, 1)− p12(0, 1)p23(0, 1)p13(1, 0).

The corresponding Markov move is to remove edges 1→ 2, 2→ 3
and 3→ 1, and replace them by the same edges oriented in the
opposite direction.
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Summary of Markov Moves

4-node network, ρij constant

Reminder: ρij = ρ, including ρij = 0.

Figure: A binomial of degree 3

Figure: A binomial of degree 4
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Summary of Markov Moves

4-node network, ρij Constant

Figure: A more complicated binomial of degree 4

represents

pij(0, 0)pjk(1, 1)pkl(0, 1)pil(1, 0)− pij(1, 0)pjk(1, 0)pkl(1, 1)pil(0, 0)

The moves come in degrees 3, 4, 5, 6.
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The moves come in degrees 3, 4, 5, 6.
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Summary of Markov Moves

4-node network, ρij edge-dependent

Reminder: ρij = ρ+ ρi + ρj .

Figure: A binomial of degree 3

Figure: A binomial of degree 4
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Summary of Markov Moves

4-node network, ρij edge-dependent

Reminder: ρij = ρ+ ρi + ρj .
What follows is a list of all possible moves on a 4-node network, with
respect to symmetry of course.

Figure: A binomial of degree 3

Figure: A binomial of degree 4
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Summary of Markov Moves

4-node network, ρij edge-dependent

Figure: A binomial of degree 3

Figure: A binomial of degree 4
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Summary of Markov Moves

4-node network, ρij edge-dependent

Figure: A binomial of degree 3

Figure: A binomial of degree 4
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Summary of Markov Moves

4-node Network, ρij edge-dependent

Figure: A binomial of degree 4

Figure: A binomial of degree 4
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Summary of Markov Moves

4-node Network, ρij edge-dependent

Figure: A binomial of degree 4

Figure: A binomial of degree 4
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Summary of Markov Moves

4-node network, ρij edge-dependent

Figure: A binomial of degree 4

Figure: A binomial of degree 5
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Summary of Markov Moves

4-node network, ρij edge-dependent

Figure: A binomial of degree 4

Figure: A binomial of degree 5
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Summary of Markov Moves

4-node network, ρij edge-dependent

Figure: A binomial of degree 5

Figure: A binomial of degree 6
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Summary of Markov Moves

4-node network, ρij edge-dependent

Figure: A binomial of degree 5

Figure: A binomial of degree 6

Stephen E. Fienberg (CMU) Markov Bases of p1 Models December 11, 2008 26 / 28



Summary

Summary

Graphs and network models.

p1 and its algebraic representation:
Reviewed of p1 and log-linear models.
Developed Markov bases.

Markov bases and proposed uses:
Existence of MLE.
Generate exact distribution for p1 and use for assessing goodness-of-fit.

Future work includes:
Completing algebraic characterization of p1 models and putting them
to use.
Generalizations to exponential random graph models (ERGM) models
[also known as p∗ models]:

Many complex statistical issues including existence of MLEs
(non-existence = degeneracies involving zero estimates) and
near-degeneracies.
Scaling tools up to be of use for analysis large networks with efficient
computation.
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Summary

... The End ...
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