Identity Management on Homogeneous Spaces

Xiaoye Jiang and Leonidas J. Guibas Stanford University

Algebraic Methods in Machine Learning Workshop for NIPS 2008

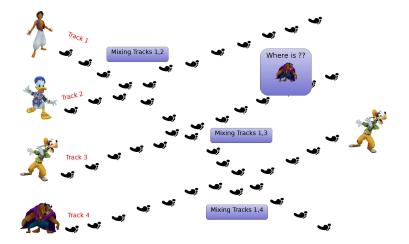
December 12, 2008

Ranking, Voting and Tracking

3

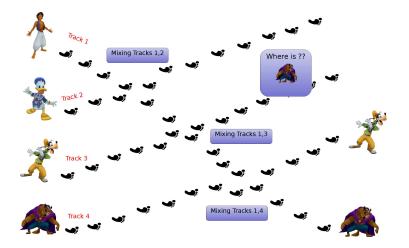
・ロン ・四 ・ ・ ヨン

Problem in Identity Management



A⊒ ► < 3

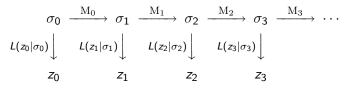
Problem in Identity Management



-

A 🕨 🔸

Markov Model for Identity Management



 σ : true state; z: observations; M: markov matrix; $L(z|\sigma)$: likelihood function.

- Mixing Model: tracks swapped identities with some probability.
- Observation Model: identity on a particular track is observed.
- Problem: For each timestep, find posterior over σ_t conditioned on all past observations.
- Our Problem: Find posterior over class characteristics (red or blue) conditioned on all past observations.

▲日▼ ▲□▼ ▲目▼ ▲目▼ ■ ● ●

Our Problem

- Define $\sigma^{(t)} \in S_n$ to be a mapping from identities $\{i_1, i_2, \cdots, i_{m+n}\}$ to tracks $T = \{t_1, t_2, \cdots, t_{m+n}\}$.
- After a random permutation among tracks $\tau^{(t)}$. The association of identities with tracks at time t + 1 is $\sigma^{(t+1)} = \tau^{(t)}\sigma^{(t)}$.
- Assume *n* of the identities are red and the remaining *m* identities are blue.
- We care only about the **class characteristics** (red or blue) of identities.

Homogeneous Space

- Homogeneous Space: All k-subsets of $\{1, 2, \dots, n\}$.
- Permutation groups act on homogeneous spaces.

Example

• Suppose n = 3, k = 2, homogeneous space X is all 2-subset of $\{1, 2, 3\}$, i.e. $X = \{\{1, 2\}, \{2, 3\}, \{1, 3\}\}$.

• Permutation group S_3 acts on X, e.g., if

$$\tau = \left(\begin{array}{rrr} 1 & 2 & 3 \\ 2 & 3 & 1 \end{array}\right)$$

then $\tau(\{1,2\}) = \{2,3\}; \tau(\{2,3\}) = \{1,3\}; \tau(\{1,3\}) = \{1,2\}.$

Markov Process on Homogeneous Space

• A probability distribution Q on permutation groups induces a Markov process on the homogeneous space X with transition probability

$$P_x(y) = \sum_{\tau:\tau x = y} Q(\tau)$$

• **Naive Model:** Maintain beliefs on homogeneous space instead of full permutation group.

Running Example

Example (Markov Model on Homogeneous Space)

• Suppose m = n = 3 and we are sure that $\{t_1, t_2, t_3\}$ are red, then $f \in L(X)$

$$f(x) = \begin{cases} 1 & \text{if } x = \{t_1, t_2, t_3\} \\ 0 & \text{otherwise} \end{cases}$$

• If a mixing happened among tracks t_3 and t_4 , then

$$Q(\tau) = \begin{cases} p & \tau = \mathrm{id} \\ 1 - p & \tau = (t_3, t_4) \\ 0 & \mathrm{otherwise} \end{cases}$$

• The Markov mixing matrix induced from Q would be

	$\{t_1, t_2, t_3\}$	$\{t_1, t_2, t_4\}$	$\{t_1, t_2, t_5\}$		$\{t_3, t_5, t_6\}$	$\{t_4, t_5, t_6\}$
$\{t_1, t_2, t_3\}$	р	1 - p	0		0	0
$\{t_1, t_2, t_4\}$	1 - p	р	0		0	0
$\{t_1, t_2, t_5\}$	0	0	1		0	0
:	:	:	:	· ·.	:	:
$\{t_3, t_5, t_6\}$	0	0	0		р	1 - p
$\{t_4, t_5, t_6\}$	0	0	0		1 - p	р

X. Jiang and L. Guibas (AML 2008)

Mixing Model

• Suppose *Q* is a distribution on permutation group *S*_{*m*+*n*}, then the simplest mixing model is

$$Q(au) = \left\{egin{array}{cc} p & au = {
m id} \ 1-p & au = (t_i,t_j) \ 0 & {
m otherwise} \end{array}
ight.$$

• Q induces a Markov update of beliefs for $f \in L(X)$

$$f(y) \leftarrow \sum_{x} P_{x}(y) f(x)$$

where $P_x(y) = \sum_{\tau:\tau x=y} Q(\tau)$.

Observation Model

- The simplest model for observation consist of receiving information *z* that with some high probability, target on track *t_i* is red.
- Likelihood function have the form $(a \gg b)$:

$$L(z|x) = \begin{cases} a & \text{if } t_i \in x \\ b & \text{if } t_i \notin x \end{cases}$$

• Posterior by Bayes rule

$$f(x|z) = \frac{L(z|x) \cdot f(x)}{\sum_{x} L(z|x) \cdot f(x)}$$

Decomposition of Homogeneous Space

• Function space of homogeneous space $M^{m,n}$ decomposes as

$$S^{m+n} \oplus S^{m+n-1,1} \oplus S^{m+n-2,2} \oplus \ldots \oplus S^{m,n}$$

- $S^{m+n-i,i}$ is invariant under actions by S_{m+n} .
- Hierarchical structures: Direct sum of the first j subspaces is a $\binom{m+n}{j}$ dimensional subspace, can be regarded as functions defined on all j-subsets (j^{th} order statistics).

۲

$$M^{m,n} = S^{m+n} \oplus S^{m+n-1,1} \oplus S^{m+n-2,2} \oplus \cdots \oplus S^{m,n}$$

= $M^{m+n-j,j} \oplus S^{m+n-j-1,j+1} \oplus \cdots \oplus S^{m,n}$

Radon Up Transformations

• For $1 \le k \le n$ define the *Radon up transform*

$$R^+: M^{m+n-k,k} \to M^{m,n}$$
 by $R^+f(s) = \sum_{s \supset r} f(r)$

where $r \in M^{m+n-k,k}$ is a k-subset and $s \in M^{m,n}$ is an n-subset.

Example

・ 同 ト ・ ヨ ト ・ ヨ ト

Radon Down Transformations

 If M^{m,n} and M^{m+n-k,k} are given bases consisting of delta functions on n-subsets and k-subsets. For 1 ≤ k ≤ n define Radon down transform R⁻: M^{m,n} → M^{m+n-k,k}, the (r, s) element of R⁻ is

$$\frac{(-1)^{n-k}(n-k)}{(-1)^{|s-r|}|s-r|\binom{m+n-k}{|s-r|}}$$

where $r \in M^{m+n-k,k}$ is a k-subset and $s \in M^{m,n}$ is an n-subset. • Radon transform R^+ and R^- satisfy

- ► $R^{-}R^{+} = I$
- R^+R^- is an orthogonal projection.

Bandlimited Mixing Model

- Bandlimiting: Maintain kth order statistics f^k ∈ M^{m+n-k,k}, which can be interpreted as the likelihood of a particular k-subset being all red.
- Induce mixing model Q to $M^{m+n-k,k}$ and update f^k by

$$f^k(y) \leftarrow \sum_{x} P_x(y) f^k(x)$$

Theorem

Both R^+ and R^- commute with the Markov mixing matrices induced from probability Q on permutation group S_{m+n} .

Bandlimited Observation Model

- Observation consists of first order statistics (observing the identity on track *t_i* is red with high probability)
- Lift first order statistics to k^{th} order statistics by Radon up transform.
- Use Bayes update to get posterior.

Classification Criteria

- We project *k*th order statistics to first order statistics using Radon down transform.
- Predict the tracks with highest *n* scores as red members.

Real Camera Data

- Real Network with 8 Cameras
- 11 People (5 red, 6 blue)
- Experiments with different number of mixing events and observation events

Figure: Sample Image.

18 / 22

Experiment	#Mixings	#Observations	Explanations
1	8	76	few mix, lots of obs
2	169	184	
3	226	116	
4	261	64	lots of mix, few obs

Table: Experiments Data Summary

Energy Distributions

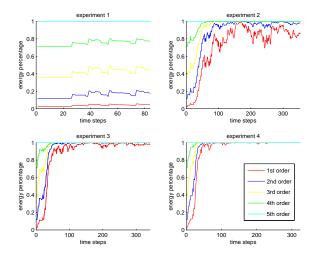


Figure: Energy distributions for four experiments

-

A ►

Classification Accuracy

average accuracy of all time steps 0.9 0.8 0.7 0.6 accuracy 0.5 0.4 0.3 experiment 1 experiment 2 0.2 experiment 3 0.1 experiment 4 0 1 2 3 4 5 statistical order

Figure: Classification accuracy of implementation with different statistical order.

X. Jiang and L. Guibas (AML 2008) Identity Mange. on Homogeneous Spaces Decemb

< 🗇 🕨 🔸

Conclusions and Future Work

Conclusions

- Distributions on homogeneous spaces can be compactly summarized.
- Radon transforms useful for mapping distributions between different statistical orders.
- Evaluation of our model on a real camera network.

Future

- Use similar ideas to study other machine learning problems arising from ranking and voting.
- Smarter ways of projecting data on homogeneous spaces to low order statistics.