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Statistical Learning

Supervised Learning Problem:
Training Data: {(xi, yi)}m

i=1 generated according to
unknown distribution.
Goal: Find labelling rule L(x) to minimize generalization
error:

E[`(x,L(x), ytrue)]

Problems: Do not know distribution. Control overfitting.
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Overfitting: An Example 1

1Adapted from http://www.mit.edu/∼9.520/Classes/class02.pdf
Huan Xu McGill University
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Regularization

Fact 1: Overfitting solutions are unnecessarily complicated.

Approach 1: Penalizing the complexity of the solution.

min
L

:
m∑

i=1

`(xi,L(xi), yi) + ρ(L).

ρ(L) is the regularization term. Typically chosen as a norm
function.
Adding apples with oranges.
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Robustness

Fact 2: Overfitting solutions are sensitive to disturbance.
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Robustness & Overfitting: an example2

Consider the 10-sample example

2Adapted from http://www.mit.edu/∼9.520/Classes/class02.pdf
Huan Xu McGill University
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Robustness & Overfitting: an example (Cont.)

Fitting the samples with an arbitrary degree polynomial

OverfitingHuan Xu McGill University
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Robustness & Overfitting (Cont.)

Perturbing the sample slightly
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Robustness & Overfitting (Cont.)

The solution changes dramatically
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Robustness & Overfitting (Cont.)

Degree-2 polynomial fitting
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Robustness & Overfitting (Cont.)

Not sensitive to perturbation
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Robustness

Fact 2: Overfitting solutions are sensitive to disturbance.
Approach 2: Find a robust (w.r.t sample perturbation)
solution.
How? Robust Optimization.
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Robust Optimization

General decision problem:

max
x

u(x, ξ).

What if ξ is unknown?

noisy/incorrect observation

estimation from finite samples

simplification of the problem

Max-min solution.

max
x

min
ξ∈∆

u(x, ξ).

Huan Xu McGill University
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Main Contribution: Regularization = Robustness

Fact 3: Approach 1 and Approach 2 are equivalent!
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Regularized SVM

Support Vector Machine:
Look for a linear classifier in the feature space.

min
w,b

: c‖w‖2 +
m∑

i=1

ξi

s.t. : ξi ≥ 1− yi(〈w, xi〉+ b)
ξi ≥ 0

Or equivalently:

min
w,b

: c‖w‖2 +
m∑

i=1

max[1− yi(〈w, xi〉+ b), 0]

Huan Xu McGill University
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Robust SVM without Regularization

For some set N , solve the following:

min
w,b

: sup
(δ1,...,δm)∈N

m∑
i=1

max[1− yi(〈w, (xi − δi)〉+ b), 0]

Here, the set N is called Uncertainty Set. In particular, we
investigate Sublinear Aggregated Uncertainty Set.

Huan Xu McGill University
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Uncertainty Set/Allowed Disturbance: Formal definition

A set N0 ⊆ Rn is called an Atomic Uncertainty Set if

(I) 0 ∈ N0;
(II) supδ∈N0

[
w>δ

]
= supδ′∈N0

[
− w>δ′

]
< ∞, ∀w ∈ Rn.

Sublinear Aggregated Uncertainty set N for N0:

(i) {(δ1, . . . , δm) | δt ∈ N0, δi 6=t = 0} ⊆ N , t = 1, . . . , m

(ii) N ⊆ {(α1δ1, . . . , αmδm) |
m∑

i=1

αi = 1, αi ≥ 0, δi ∈ N0, i = 1, . . . , m}.
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Sublinear Aggregated Uncertainty Set: Illustration

(a) Inner Set (b) Outer Set (c) An SAU Set
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Sublinear Aggregated Uncertainty Set: Some Examples

(1) {(δi, . . . , δm) |
∑m

i=1 ||δi|| ≤ c}.
(2) {(δ1, · · · , δm)|∃t ∈ [1 : m]; ‖δt‖ ≤ c; δi = 0,∀i 6= t}.
(3) {(δ1, · · · , δm)|

∑m
i=1

√
ci‖δi‖ ≤ c}.
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Shocker: Regularization = Robustness

Proposition: Assume {xi, yi}m
i=1 are non-separable. Then

min
w,b

: sup
(δ1,...,δm)∈N

m∑
i=1

max[1− yi(〈w, (xi − δi)〉+ b), 0]

is equivalent to

min
w,b

: sup
δ∈N0

(w>δ) +
m∑

i=1

ξi

s.t. : ξi ≥ 1− yi(〈w, xi〉+ b)
ξi ≥ 0

This is a regularization term.
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Regularization = Robustness (Cont.)

Corollary:
Consider N = {(δi, . . . , δm) |

∑m
i=1 ||δi||∗ ≤ c}. If the training

sample {xi, yi}m
i=1 are non-separable, then the following two

optimization problems on (w, b) are equivalent

min : max
(δ1,··· ,δm)∈N

m∑
i=1

max
[
1− yi

(
〈w, xi − δi〉+ b

)
, 0

]
,

min : c‖w‖+
m∑

i=1

max
[
1− yi

(
〈w, xi〉+ b

)
, 0

]
.

Standard regularization essentially assumes that the
disturbance is spherical
A physical meaning to the regularization constant
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Kernelization

Linear Classifier in abstract feature space:

min
w,b

: c‖w‖H +
m∑

i=1

ξi

s.t. : ξi ≥
[
1− yi(〈w,Φ(xi)〉+ b)],

ξi ≥ 0.

Here, ‖w‖H =
√
〈w, w〉.
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Regularization = Robustness still holds

Consider N = {(δi, . . . , δm) |
∑m

i=1 ||δi||H ≤ c}. If {Φ(xi), yi}m
i=1

are non-separable, then the following two optimization
problems on (w, b) are equivalent

min : max
(δ1,··· ,δm)∈N

m∑
i=1

max
[
1− yi

(
〈w, Φ(xi)− δi〉+ b

)
, 0

]
,

min : c‖w‖H +
m∑

i=1

max
[
1− yi

(
〈w, Φ(xi)〉+ b

)
, 0

]
.

Conclusion: standard kernelized SVM is implicitly a robust
classifier (without regularization) with noises lie in the
feature-space.
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Input Space Uncertainty

Feature-space uncertainty V input-space uncertainty.

Lemma 1:
Suppose there exist X ⊆ Rn, ρ > 0, and a continuous
non-decreasing function f : R+ → R+ satisfying f (0) = 0, such
that

k(x, x)+k(x′, x′)−2k(x, x′) ≤ f (‖x−x′‖2
2), ∀x, x′ ∈ X , ‖x−x′‖2 ≤ ρ.

Then

‖Φ(x̂ + δ)− Φ(x̂)‖H ≤
√

f (‖δ‖2
2), ∀‖δ‖2 ≤ ρ, x̂, x̂ + δ ∈ X .
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Input Space Uncertainty (Cont.)

Example: Degree-2 Polynomial for 2-d data,

Φ(x) =

 x2
1√

2x1x2
x2

2

 .

The image of a small-ball in input space Φ(BI) ⊆ a
small-ball in feature space BF.
Robust to BF V robust to BI.
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PAC Setup

X ⊆ Rn is bounded.
The training samples (xi, yi)∞i=1 are generated i.i.d.
according to an unknown distribution P supported on
X × {−1, +1}.
Kernel function k(·, ·) satisfies the condition of Lemma 1.
Denote K , maxx∈X k(x, x).

Huan Xu McGill University
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Consistency: Main result

Theorem:
There exists a random sequence {γm,c} independent of P such
that, ∀c > 0, limm→∞ γm,c = 0 almost surely, and the following
bounds on the Bayes loss and the hinge loss hold uniformly
∀(w, b) ∈ H × R:

EP(1y 6=sgn(〈w, Φ(x)〉+b)) ≤

γm,c + c‖w‖H +
1
m

m∑
i=1

max
[
1− yi(〈w, Φ(xi)〉+ b), 0

]
;

E(x,y)∼P
(

max(1− y(〈w, Φ(x)〉+ b), 0)
)
≤

γm,c(1 + K‖w‖H + |b|) + c‖w‖H +
1
m

m∑
i=1

max
[
1− yi(〈w, Φ(xi)〉+ b), 0

]
.

Huan Xu McGill University

Regularization and Robustness of Support Vector Machines



Introduction SVM & Robust Classification Consistency

Proof sketch: Linear case

Regard testing samples as perturbed version of training
samples.
A testing sample (x′, y′) and a training sample (x, y) are
called a sample pair if y = y′ and ‖x− x′‖2 ≤ c.
Given m training samples and m testing samples, Mm is the
largest number of pairings.
For paired samples, the testing error & hinge-loss is upper
bounded by

max
(δ1,··· ,δm)∈N0×···×N0

m∑
i=1

max
[
1− yi

(
〈w, xi − δi〉+ b

)
, 0

]
≤cm‖w‖2 +

m∑
i=1

max
[
1− yi(〈w, xi〉+ b), 0].

Huan Xu McGill University
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Proof sketch: Linear case (Cont.)

Lemma 2:
Given c > 0, Mm/m → 1 almost surely as m → +∞, uniformly
w.r.t. P.

Partition X into finite “small” sets.
Ntr

i and Nte
i be the number of training samples and testing

samples falling in the ith set.
(Ntr

1 , · · · , Ntr
T ) and (Nte

1 , · · · , Nte
T ) are multinomial r.v

following a same distribution.∑T
i=1

∣∣Ntr
i − Nte

i

∣∣/m → 0 with probability one.
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Kernelized version

For good kernels, robustness in the feature-space implies
robustness in the input-space, which completes the proof.
Bad kernels can be non-consistent. Eg., k(x, x′) = 1(x=x′).
The result of SVM is sign(

∑m
i=1 αik(x, xi) + b), and provides

no meaningful prediction if x is not one of the training
samples.
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Conclusion

Conclusion:
1 Regularization is indeed Robustness, and Vice Versa.
2 Consistency is the result of Robustness.

Future works:
1 New regularization schemes using Robustness.
2 A general robust learning framework.

Preprint available: http://www.cim.mcgill.ca/∼xuhuan/
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