

Clustering of Visual Data using Ant-inspired Methods

Tijana Janjusevic

Multimedia and Vision Group, Queen Mary, University of London

Supervisor: Prof. Ebroul Izquierdo

Queen Mary

Overview

- Introduction
- Biologically Inspired Optimization Systems

Slide 2

- ACO based image classifier
 - Ant Colony Optimization (ACO)
 - Subspace clustering by Ants
 - Experimental Results
- Ant-tree for video summarization
 - Ant-tree new model for clustering
 - Experimental Results
- Future work

Image Classification

- Data Mining tasks: feature extraction, pattern recognition,
 - segmentation,
 - feature selection,
 - classification,
 - optimization,
 - annotation, ...

Image Classification

- the task is to learn to assign images with same semantic content to predefined classes
- two types of classification schemes: *supervised* and *unsupervised*.
- Supervised classification
 - requires relevance feed-back from a human annotator and training data
- Unsupervised classification Clustering
 - without training or need for knowledge about the data

The performance of the image classification algorithms relies on the efficient optimisation techniques

Biologically Inspired Optimisation techniques

- Recent developments in applied and heuristic optimisation have been strongly influenced and inspired by natural and biological system.
- Biologically Inspired systems:

Artificial Immune Systems, Particle Swarm, Ant Colony Systems

Ant Colony Optimisation (ACO)

- Meta-heuristic that uses strategies of ants to solve optimization problems.
- An important and interesting behavior of ant colonies is their foraging behavior, and, in particular, how ants can find shortest paths between food sources and their nest, using pheromone driven communication.

Ant Colony System

• The Ant System algorithm (AS) was first proposed to solving the Traveling Salesman Problem (TSP).

Given a set of *n* points and a set of distances between them, we call d_{ij} the length of the path between points *i* and *j*.

o The probability of choosing next *j* node:

0

Slide

Problem Definition

- Combination of low-level visual features in Clustering
 - Each group of images may correlate with respect to different set of important features, and each group may contain some irrelevant features

CLD, EHD

University of London

Subspace Clustering using ACO

• Ant Colony Optimisation and its learning mechanism is implemented for **optimizing feature weights for each cluster** of images.

Each ant clusters images according to:

- different local feature weights
- pheromone value from previous solutions

CLD, EHD

TGF, EHD

Slide 8

Subspace Clustering using ACO

Multi-feature Combination:

$$^{\alpha}(x,\widetilde{x}) = \sum_{l=1}^{m} \alpha_{l} D_{l}(F_{l},\widetilde{F}_{l})$$

D

Proposed Algorithm

I. Each ant will assign each image x_i , $1 \le i \le n$ to the cluster π_u , $1 \le u \le k$, with the probability $P_{(x_i,\pi_u)}$ obtained from:

$$p_{(x_i,\pi_u)} = \frac{\tau_{(x_i,\pi_u)}\eta_{(x_i,\pi_u)}}{\sum_{u=1}^{K} \tau_{(x_i,\pi_u)}\eta_{(x_i,\pi_u)}} \qquad \eta_{(x_i,\pi_u)} = \frac{B}{D^{\alpha_u}(x_i,c_u)}$$

I. Computation of weights:
$$\alpha_{(u,l)} = \frac{e^{-R \cdot AD_{(u,l)}}}{\sqrt{\sum_{s=1}^{m} e^{-2 \cdot R \cdot AD_{(u,s)}}}} \qquad AD_{(u,l)} = \frac{1}{|\pi_u|} \sum_{x \in \pi_u} D_l(x, c_u)$$

- III. Computation of centroids.
- IV. Pheromone Update:

$$\tau_{(x_i,c_u)}(t) = \rho \cdot \tau_{(x_i,c_u)}(t-1) + \sum_{A=1}^{S} \Delta \tau_{(x_i,c_u)}^{A}(t)$$

Experimental Evaluation

- Low-level features (descriptors) used For visual representation of images:
 - Colour Layout (CLD),
 - Colour Structure (CSD),
 - Dominant Colour (DCD),
 - Edge Histogram (EHD)
 - Grey Level Co-occurrence Matrix (GLC)

Synthetic Data

Results:

	Feature Weighting			
Descriptors	CLD	DCD	EHD	GLC
Group A	0.03	0.01	0.91	0.05
Group B	0.11	0.76	0.08	0.05
Group C	0.05	0.01	0.10	0.84

Method	Average Error Rates	
SC-ACO	$0.06 {\pm} 0.02$	
PROCLUS	0.09±0.04	
GFS-K-Means	$0.62 {\pm} 0.07$	
K-Means	0.33±0.08	

Experimental results

• The Corel image database - 600 images with 6 semantic concepts

Slide 11

Method	Average Error Rates	
SC-ACO	0.30±0.02	
PROCLUS	0.37±0.05	
GFS-K-Means	0.47±0.07	
K-Means	0.52±0.09	

Experimental results

- Flickr Image Database 500 images segmented into regions.
- Semantic Concepts: Sand, Sea, Vegetation, Building, Sky, Person, Rock, Tree, Grass, Ground, and.

Mathad	Average Error Rates		
Methou	5 concepts	10 concepts	
SC-ACO	0.21±0.03	0.31±0.04	
PROCLUS	0.28±0.06	0.32±0.05	
GFS-K-Means	0.36±0.07	0.45±0.08	
K-Means	0.39±0.08	0.5±0.1	

MULTIMEDIA & VISION RESEARCH LAB

Ant-tree for video summarisation

Ant-Tree clustering method

Slide 13

• Inspired by self-assembling behavior of African ants and their ability to **build chains (bridges)** by their bodies in order to link leaves together.

• We model the ability of ants to build live structures with their bodies in order to discover, in a distributed and unsupervised way, a tree-structured organisation and summarisation of the video data.

AntTree: New model for clustering

Ant case

move a_i toward a_k

3. <u>Else</u> randomly move a_i toward a_k

apos

<u>General principles</u>

Main algorithm

- 1. all ants placed on the support; initialization: $T_{sim}(a_i)=1$, T_{dir}
- 2. While there exists non created ant a Do
- 3. If ai is located on the support Then Support case
- 4. Else Ant case
- 5. End While

1. let a_{pos} denote the ant on which a_i is located and let a_k denote a randomly selected neighbour of

<u>Else</u> decrease $T_{dissim}(a_i)$, increase $T_{sim}(a_i)$ and

2. If $Sim(a_i, a_j) > T_{sim}(a_i)$ Then connect a_i to a_{pos}

Slide 14

Surveillance video

Slide 15

Department of Electronic Enginnering

University of London

Summarization results (PETS2001)

Camera video – 4 min 30 sec (duration)

Video summary – 53 sec

Queen Mary

Future work

- Improvement of SC Method
 Pheromone driven mechanism of ACO will be used for optimization of clustering
 task by searching for number of clusters that leads to best clustering.
- Implementation of FS for Video Summarization and Scene Detection The aim of this task is to detect and classify events from video using intelligent combination of multiple low-level visual features.

Thank you for your attention!

tomas.piatrik@elec.qmul.ac.uk

Department of Electronic Enginnering

Slide 19