

Institute of Information Systems & Information Management

Eliminating the Back-Tracking Step in the Longest Common Subsequence (LCSS) Algorithm for Video Sequence Matching

Werner Bailer SAMT 2008, Koblenz, 2008-12-04

Outline

- Motivation
 - detecting repeated video content
- Core Problem: distance between video sequences
- Proposed distance measure
- Optimisation
- Demo

Core Problem: Measuring Distance between Video Sequences

Requirements

- support any type of features (audio/video, discrete or continuous values, scalar/vector, custom distance functions between two feature values/vectors)
- support partial match of sequences
- different timing of sequences
- support gaps and insertions in the matching parts
- minimum length of useful match

Approaches

- Dynamic Time Warping: assign each element of sequence A to nearest element of sequence B
- String edit distance: identical, replace, insert, delete

Distance Measure for Video Sequences (1)

- match sequences of feature vectors extracted from the input videos
- based on Longest Common Subsequence (LCSS) algorithm
 - variant of string edit distance
 - build matrix from matches
 - find longest matching subsequence which may have gaps by back-tracking
 - original LCSS algorithm assumes discrete input values, match := equality of input values
- LCSS for vectors of continuous values
 - proposed for 2D trajectories [Vlachos et al., 2002]
 - match := Euclidian distance between elements $< \varepsilon$ and offset between elements $< \delta$

Distance Measure for Video Sequences (2)

- for matching feature sequences of videos
 - replace ε by a vector of thresholds $\theta_{sim} = \{\varepsilon_1, ..., \varepsilon_F\}$ for m features 1,..., F, which are weighted by weights $\{w_1, ..., w_F\}$
 - match features f with appropriate distance functions
 - discard δ , absolute temporal distance of feature vectors in the sequence is irrelevant
 - accept all matches longer than a minimum length θ_{len}
 - introduce maximum gap γ between two consecutive matching feature vectors
 - consequence of gap constraint:
 - not just *longest* common subsequence (might have gaps)
 - but all *sufficiently long* (> θ_{len}) subsequences
 - similarity := length of match / min(lenghts of input sequences)

K-Sizace

Distance Measure for Video Sequences (3)

1D Example

- input sequences top/left
- $\theta_{\text{sim}} = 0.5$
- $\theta_{len} = 3$
- $\gamma = 1$

2.3	4.7	1.2	3.3	2.2	1.4

1.3	0	0	1	1	1	1
2.5	1	1	1	1	2	2
3.4	1	1	1	2	2	2
2.4	1	1	1	2	3	3
4.6	1	2	2	2	3	3
1.5	1	2	3	3	3	4
2.6	1	2	3	3	4	4

RESEARCH

Distance Measure for Video Sequences (4)

Distance Measure – Optimisation: Eliminating Back-Tracking

- proposed optimisation
 - keep while building matrix
 - last match in each line and list of current sequences
 - for each match
 - find nearest previous match (city block distance – 2)
 - search in $-(\gamma + 1)$ lines, add to this sequence: O(1)

1.3	0	0	1	1	1	1
2.5	1	1	1	1	2	2
3.4	1	1	1	2	2	2
2.4	1	1	1	2	3	3
4.6	1	2	2	2	3	3
1.5	1	2	3	3	3	4
2.6	1	2	3	3	4	4

2.3 4.7 1.2 3.3 2.2

Demo

- Video Browsing Tool
- Rushes Skimming