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Overview CLARITY
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e|Introduction

* Introduction to lifelogging & the challenges involved
« Why Semantic Concept Detection in Lifelogs?

e Concept Detection Approach

» Selecting concepts
* Processing concepts
* Image and event thresholds

eExperimental Set-Up
eResults

eConclusions
e Future research
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Lifelogging CLARITY
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Lifelogging is about digitally recording your daily life

Sometimes its for a reason
Work e.g. security personnel, medical staff, etc.
Personal e.g. diaries, etc.

Sometimes its for posterity
Recording vacations, family gatherings, social occasions

Sometimes its because we can
And we’re not yet sure what we’ll do with it e.g. MyLifeBits
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Lifelogging Devices CLARITY
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Tano et. al. University of Electro-Communications, Tokyo, Japan
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SenseCam CLARITY
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SenseCam is a Microsoft Research Prototype

Multi-sensor device
Colour camera

3 accelerometers

Light meter

Passive infrared sensor

1GB flash memory storage
Smart image capture ~3 images/min

Since April 2006 we’ve had two SenseCams ... in 2007 we
received 5 more
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How to Review Images? CLARIT
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Make a 2 minute movie of your day!
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SenseCam & Memory CLARITY

clarity-centre.org

e SenseCam may be a very powerful memory aid

* |n autobiographical (long-term) memory

e “Cued Recall” better than “Free Recall”
e Visual Encoding has strong effect on retrieval

eMemory studies on-going

e« Cambridge, U.K.
Leeds, U.K.
Toronto, Canada
lllinois, USA
etc.
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http://www.cdvp.dcu.ie/SenseCam
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Can’t “recognise” events  cuarrT

e
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We can detect this event
We know when this event is
BUT

We don’t RECOGNISE the event i.e. we don’t know “the what” of this event
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Contributions of this work... CLARIT
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eExploration of applying semantic concept detection to
the novel domain of lifelogging

e|n-depth evaluation of concept detectors

e Allows possibilities to “gist” human lifestyle activities
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e|ntroduction

 Introduction to lifelogging & the challenges involved
 Why Semantic Concept Detection in Lifelogs?

eConcept Detection Approach

« Selecting concepts
* Processing concepts
* Image and event thresholds

eExperimental Set-Up
eResults

eConclusions
e Future research
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Selecting Representative CLARITY
Concepts

oA subset of 5 user’s collection was visually inspected
by playing images in video-like fashion

¢150 concepts initially identified

eThrough refinement we narrowed down to 27

concepts

 Most representative concepts selected

e Concepts should be generalisable across users &
collections
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Vehicles External _ clarity-centre.org

£l
Helding a mobile

Shopping
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Concept detection process ciarT
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Image confidence values CLARIT
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Vehicles External = 0.002
Road = 0.007

Steering wheel = 0.003
Sky = 0.002

screen = 0.863
People =0.012
Shopping = 0.003

All values are independent
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Where are the <eating> images? c ariTY
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All 200k+ images in test set

<’ Eating

Kapur Thresholding
 Non-parametric

e Entropy based

UNIVERSITY COLLEGE DUBLIN ¢ DUBLIN CITY UNIVERSITY e TYNDALL NATIONAL INSTITUTE



Q\;Vﬁ

Where are the <eating> events? c ariTY
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AII 200k+ |mages In test set

S S SS eSS S S .

3k events Event Segmentatlon

0 T T T
Y N\

~90 images |n event X

~45 eating images in event X

I I Y Kapur Thresholding

* Non-parametric

event X has 50% eating images

* Entropy based
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e|ntroduction
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Experimental Setup CLARIT
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®5 users
1 month period each
257,518 images

3 030 events

eFirstly create annotated training set
e Every 5" image selected for training set
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SenseCam Concept Annotations

Event 5921
30/03/2007 09:22:04

Event 5922
30/03/2007 09:34:32

Event 5923
30/03/2007 09:40:08

Event 5924
30/03/2007 09:56:58

ELER

Event 5925
30/03/2007 10:27:48

Event 5927
30/03/2007 12:35:36

Event 5928
30/03/2007 12:46:42

Event 5929
30/03/2007 12:51:42

Event 5930
30/03/2007 13:43:54

Event 5931

Event 5932
30/03/2007 14:17:52

Event 5943
30/03/2007 18:23:02

Event 5944
30/03/2007 18:33:26

DOMEEC TR

SAVE PROGRESS!

30/03/2007 13:59:44 -

09

09

09

09

o

5]

22:04

34:32

40:08

56:58

27:48

35:36

51:42

Select image(s)

Annotating 5 Images

DELETE!

Select event
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Select concept
type

Vehicle Concepts

o E‘ vehicles (external view)

e E‘ Road
o [] Steering wheel (driving)

Resize Images:

o [] Inside of vehicle, not driving (airplane, taxi, car, bus)

Select individual
concept




After annotation CLARITY
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¢38,206 images annotated (training set = 14.8%)

©219,312 in test set (test set = 85.2%)

*THEN we validated accuracy of detectors on test set

* 9 judges to validate system concepts

« Each judge shown 200 positive & 200 negative images per
concept

e 50 “set” positive images & 50 “set” negative images per
concept shown to all users (to investigate judge agreement)

e 95,907 judgments made on test set!!!
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Validation tool CLAE;[T;

Interior of Vehicle  quu om:  ——p— | NoJudgements: (Tgg

Concept to .
R~ = v

User selects
positive examples

System Positive & Negative
samples randomly displayed
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Results

e Precision

— Average = 0.57
— Median = 0.60

e Judge Agreement
— Fleiss’s Kappa = 0.68

between the number of
concept training samples
and test set performance
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Results CLARITY
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BUT applying on image level isn’t so interesting

« Many SenseCam images are blurred, grainy, obscured by
hands, etc.

HOWEVER

eConsidering groups of images (i.e. CONSIDERING EVENTS)
 Reduces inaccuracies
« Allows us map “macro trends”
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Probably to be
expected of 5IT
researchers!!!
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standard deviations away from sample mean

Lifestyle Variation CLARITY
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Conclusions CLARIT
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eFor a long time focus of lifelogging community was
on hardware minituratisation and storage

eRecently focus has shifted to data management
ePotential significance of SenseCam as memory aid

eHowever recent efforts only focused on “detection”,
not “recognition”
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Conclusions CLARIT
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e Standard concept detection techniques applied to
new exciting field of lifelogging

e Extensive evaluation carried out

o 27 concepts selected from 257,518 images
« 38,206 images annotated for training set
» 95,907 test set images manually evaluated

e 17 concepts with > 60% precision
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Conclusions CLARIT

ccccccc -centre.org

e [nvestigating concepts at the event level is exciting

 Allows us to identify “macro” lifestyle
trends/profiles/signatures

 Enables us to compare lifestyles of individuals
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Future Work CLARITY
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eImprove concept performance

* Include sensor values
* |Investigate “bag of words” approach
» Adaptively learn new concepts

eUse concepts in search
* Perhaps along with GPS & Bluetooth

eBroadcast lifestyle signature/profile

e e.g. in the last week I've been spending a lot of time in front
of the PC but not so much time in the park
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Thank You

further information:

http://www.cdvp.dcu.ie/SenseCam

adoherty@computing.dcu.ie
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