

Validating the Detection of Everyday Concepts in Visual Lifelogs

Daragh Byrne¹, **Aiden R. Doherty**¹, Cees G.M. Snoek², Gareth J.F. Jones¹ and Alan F. Smeaton¹

¹CLARITY: Centre for Sensor Web Technologies, Dublin City University

²ISLA, University of Amsterdam

Overview

- Introduction
 - Introduction to lifelogging & the challenges involved
 - Why Semantic Concept Detection in Lifelogs?
- Concept Detection Approach
 - Selecting concepts
 - Processing concepts
 - Image and event thresholds
- Experimental Set-Up
- Results
- Conclusions
 - Future research

Lifelogging

Lifelogging is about digitally recording your daily life

Sometimes its for a reason

Work e.g. security personnel, medical staff, etc.

Personal e.g. diaries, etc.

Sometimes its for posterity

Recording vacations, family gatherings, social occasions

Sometimes its because we can

And we're not yet sure what we'll do with it e.g. MyLifeBits

Lifelogging Devices

Tano et. al. University of Electro-Communications, Tokyo, Japan

SenseCam

SenseCam is a Microsoft Research Prototype

Multi-sensor device

Colour camera
3 accelerometers
Light meter
Passive infrared sensor

1GB flash memory storage

Smart image capture ~3 images/min

Since April 2006 we've had two SenseCams ... in 2007 we received 5 more

How to Review Images?

Make a 2 minute movie of your day!

SenseCam & Memory

- SenseCam may be a very powerful memory aid
- In autobiographical (long-term) memory
 - "Cued Recall" better than "Free Recall"
 - Visual Encoding has strong effect on retrieval
- Memory studies on-going
 - Cambridge, U.K.
 - Leeds, U.K.
 - Toronto, Canada
 - Illinois, USA
 - etc.

Lifelog Processing

http://www.cdvp.dcu.ie/SenseCam

Can't "recognise" events

We can detect this event

We know when this event is

BUT

We don't RECOGNISE the event i.e. we don't know "the what" of this event

Contributions of this work...

- Exploration of applying semantic concept detection to the novel domain of lifelogging
- In-depth evaluation of concept detectors
- Allows possibilities to "gist" human lifestyle activities

Overview

- Introduction
 - Introduction to lifelogging & the challenges involved
 - Why Semantic Concept Detection in Lifelogs?
- Concept Detection Approach
 - Selecting concepts
 - Processing concepts
 - Image and event thresholds
- Experimental Set-Up
- Results
- Conclusions
 - Future research

Selecting Representative Concepts

- A subset of 5 user's collection was visually inspected by playing images in video-like fashion
- 150 concepts initially identified
- Through refinement we narrowed down to 27 concepts
 - Most representative concepts selected
 - Concepts should be generalisable across users & collections

Concept detection process

Image confidence values

Vehicles External = 0.002Road = 0.007Steering wheel = 0.003Sky = 0.002

. . .

screen = 0.863People = 0.012Shopping = 0.003

All values are independent

Where are the <eating> images?

All 200k+ images in test set

Where are the <eating> events?

All 200k+ images in test set

Overview

- Introduction
 - Introduction to lifelogging & the challenges involved
 - Why Semantic Concept Detection in Lifelogs?
- Concept Detection Approach
 - Selecting concepts
 - Processing concepts
 - Image and event thresholds
- Experimental Set-Up
- Results
- Conclusions
 - Future research

Experimental Setup

- •5 users
- •1 month period each
- •257,518 images
- •3,030 events

- Firstly create annotated training set
 - Every 5th image selected for training set

After annotation

- •38,206 images annotated (training set = 14.8%)
- •219,312 in test set (test set = 85.2%)

THEN we validated accuracy of detectors on test set

- 9 judges to validate system concepts
- Each judge shown 200 positive & 200 negative images per concept
- 50 "set" positive images & 50 "set" negative images per concept shown to all users (to investigate judge agreement)
- 95,907 judgments made on test set!!!

Validation tool

Overview

- Introduction
 - Introduction to lifelogging & the challenges involved
 - Why Semantic Concept Detection in Lifelogs?
- Concept Detection Approach
 - Selecting concepts
 - Processing concepts
 - Image and event thresholds
- Experimental Set-Up
- Results
- Conclusions
 - Future research

Results

- Precision

 - Median = 0.60
- - Fleiss's Kappa = 0.68

between the number of concept training samples and test set performance

Vehicles External(46%)

Outdoors (62%)

Grass (60%)

Reading (58%)

Food/eating (41%)

Faces (61%)

Road (47%)

Inside of vehicle (60%)

Holding phone (39%)

Shopping (75%)

Average = 0.57

Judge Agreement

Strong correlation of 0.75

UNIVERSITY COLLEGE DUBLIN

Results

BUT applying on image level isn't so interesting

 Many SenseCam images are blurred, grainy, obscured by hands, etc.

HOWEVER

- Considering groups of images (i.e. CONSIDERING EVENTS)
 - Reduces inaccuracies
 - Allows us map "macro trends"

Num Events Across 5 Users

Overview

- Introduction
 - Introduction to lifelogging & the challenges involved
 - Why Semantic Concept Detection in Lifelogs?
- Concept Detection Approach
 - Selecting concepts
 - Processing concepts
 - Image and event thresholds
- Experimental Set-Up
- Results
- Conclusions
 - Future research

Conclusions

- •For a long time focus of lifelogging community was on hardware minituratisation and storage
- Recently focus has shifted to data management
- Potential significance of SenseCam as memory aid
- However recent efforts only focused on "detection", not "recognition"

Conclusions

- Standard concept detection techniques applied to new exciting field of lifelogging
- Extensive evaluation carried out
 - 27 concepts selected from 257,518 images
 - 38,206 images annotated for training set
 - 95,907 test set images manually evaluated
 - 17 concepts with > 60% precision

Conclusions

- Investigating concepts at the event level is exciting
 - Allows us to identify "macro" lifestyle trends/profiles/signatures
 - Enables us to compare lifestyles of individuals

Future Work

Improve concept performance

- Include sensor values
- Investigate "bag of words" approach
- Adaptively learn new concepts

Use concepts in search

Perhaps along with GPS & Bluetooth

Broadcast lifestyle signature/profile

 e.g. in the last week I've been spending a lot of time in front of the PC but not so much time in the park

Thank You

further information:

http://www.cdvp.dcu.ie/SenseCam

adoherty@computing.dcu.ie