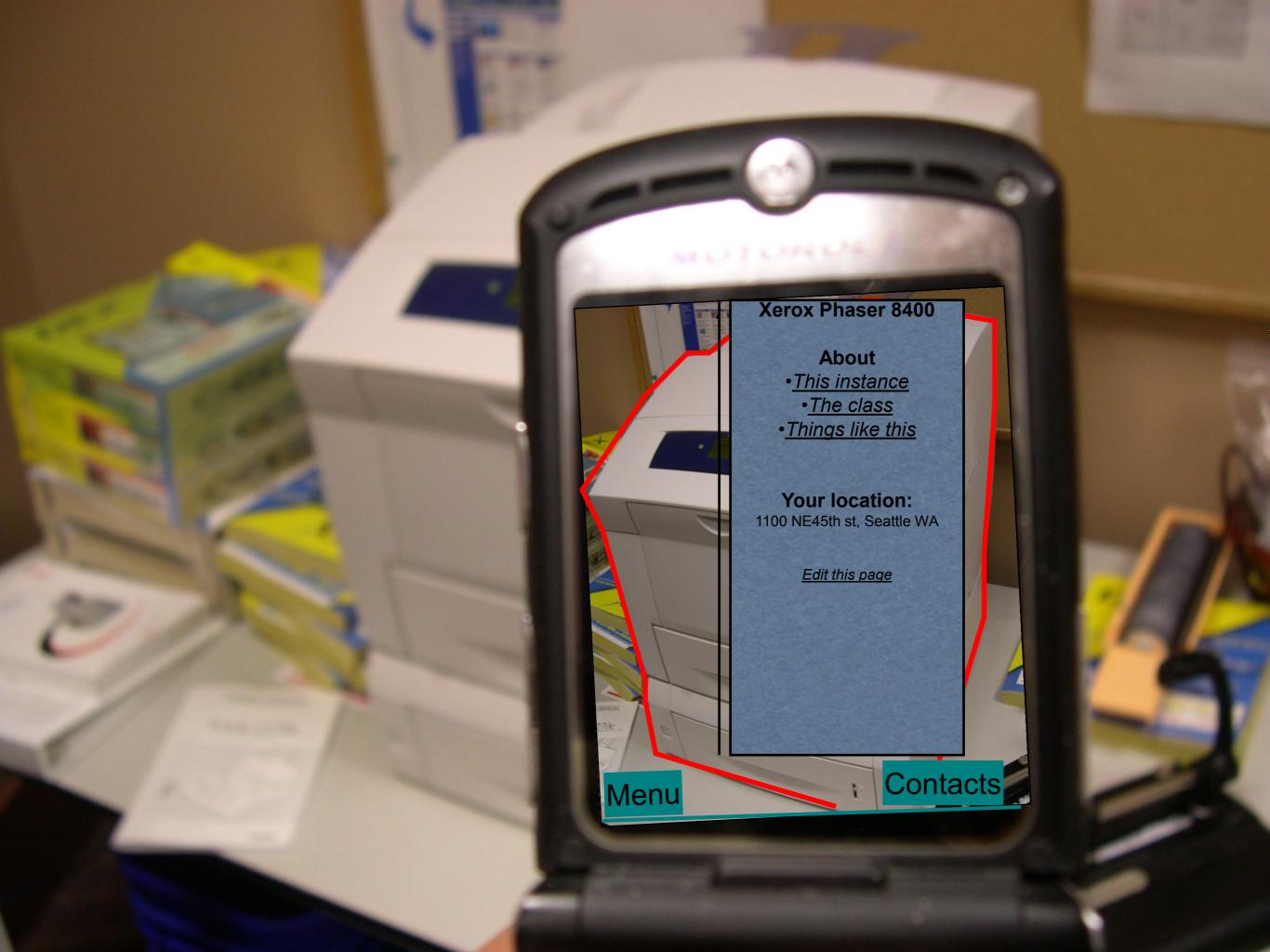
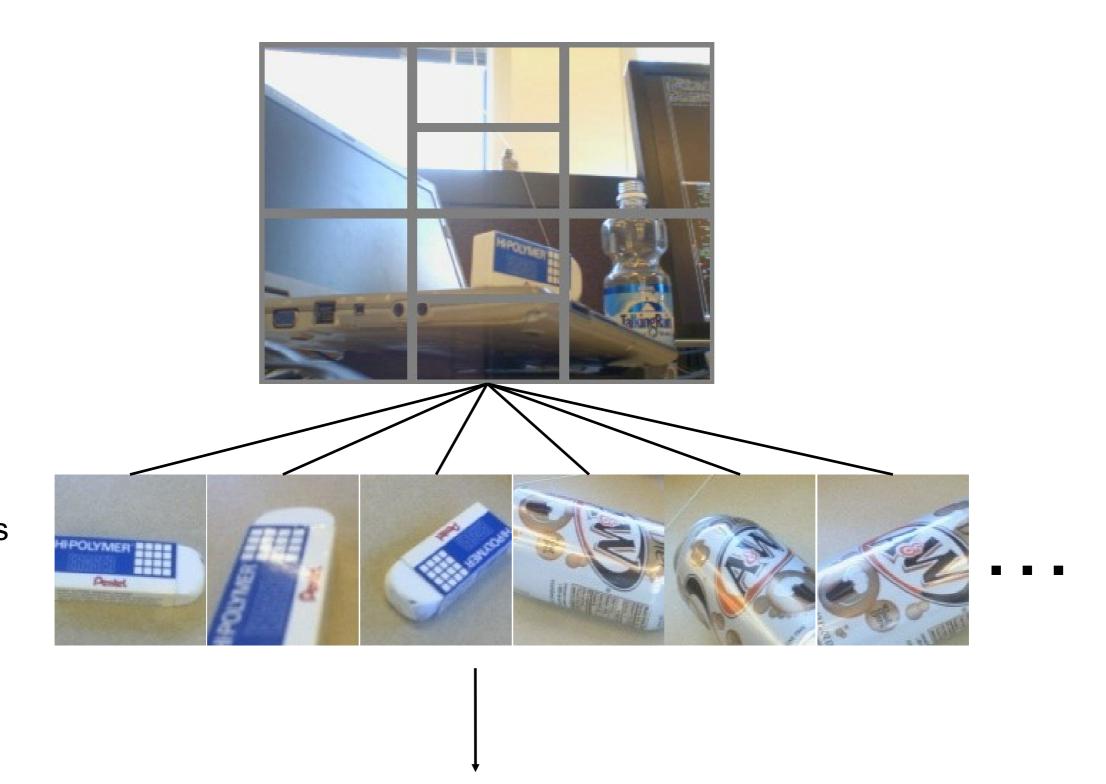
Generalization Bounds for Indefinite Kernel Machines

Shai Ben-David, Ali Rahimi, Nati Srebro



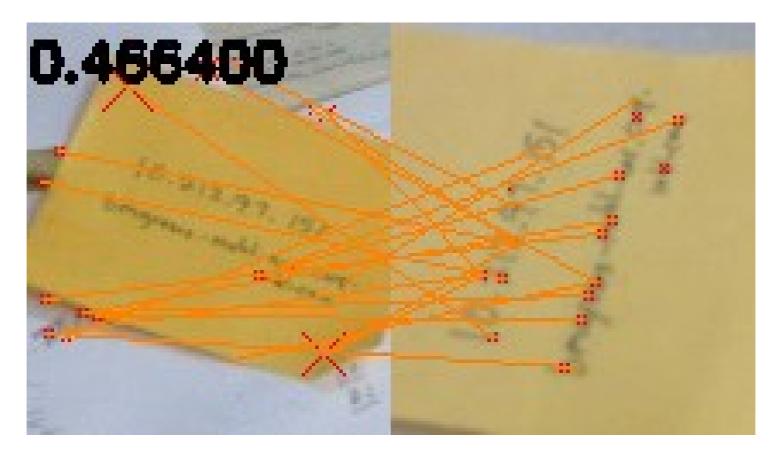
Input image

Compute similarities with training images



Some kind of classifier

 \boldsymbol{x}



 $k(x,x_i)$

K is not...

- Positive definite
- A metric
- A function on Rⁿ x Rⁿ
- Differentiable

Algorithm: When K is pd, use an SVM

$$h(x) = \sum_{i=1}^{n} \alpha_i K(x, x_i)$$

$$\min_{\alpha} \qquad \sum_{i=1}^{n} \ell(h(x_i), y_i)$$
s.t. $\alpha^{\top} \mathbf{K} \alpha \leq C$

Generalization when K is pd

$$\hat{\mathcal{L}}_S[h] = \frac{1}{n} \sum_{i=1}^n \ell(h(x_i), y_i)$$
 $\mathcal{L}[h] = \mathbb{E}\left[\ell(h(X), Y)\right]$

$$\Pr_{S} \left[\sup_{f \in \mathcal{H}_{S}} \mathcal{L}[h] - \hat{\mathcal{L}}_{S}[h] > \epsilon \right]$$

$$\mathcal{H}_{S} \equiv \left\{ x \to \sum_{i=1}^{n} \alpha_{i} K(x, x_{i}) \mid \alpha^{\top} \mathbf{K} \alpha \leq C \right\}$$

$$\subseteq \left\{ x \to \langle w, \phi(x) \rangle \mid \|w\| \leq C \right\}$$

$$\equiv \mathcal{H}$$

Analyze the generalization of a class of linear separat

Algorithm: When K is not pd

$$h(x) = \sum_{i=1}^{n} \alpha_i K(x, x_i)$$

$$\min_{\alpha} \qquad \sum_{i=1}^{n} \ell(h(x_i), y_i)$$
s.t.
$$\|\alpha\|_1 \leq C$$

Note that $\alpha^{\top} \mathbf{K} \alpha \leq \|\alpha\|_1^2 \leq C$ so when **K** is pd, this generalizes.

Algorithm: With prototype Selection

$$h(x) = \sum_{i=1}^{n} \alpha_i K(x, x_i)$$

$$\min_{lpha} \quad \sum_{i=1}^n \ell(h(x_i), y_i)$$
 $\mathrm{s.t.} \quad \|lpha\|_1 \leq C$
 $\alpha_j = 0, \quad j \in \mathcal{J}(x_1, y_1, \dots, x_n, y_n)$

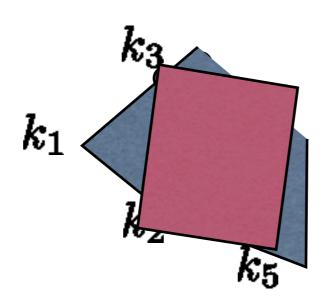
Generalization Bounds when K is indefinite

Ali's proof workshop workshop submission acceptance

Visit Lunch
TTI w/ Shai
workshop
presentation

Ali's Original Proof Idea

$$\Pr_{S} \left[\sup_{f \in \mathcal{H}_{S}} \mathcal{L}[h] - \hat{\mathcal{L}}_{S}[h] > \epsilon \right] \approx \Pr_{S,S'} \left[\sup_{f \in \mathcal{H}_{S'}} \mathcal{L}[h] - \hat{\mathcal{L}}_{S'}[h] > \epsilon \right]$$



Theorem: Let $k_1, \ldots, k_n, k'_1, \ldots, k'_n$ be random variables drawn iid from a distribution on a separable Banach space \mathcal{K} , with norm bounded above by C. Let \mathbf{B}'_1 denote a unit ball in the dual space of \mathcal{K} . Let \mathcal{H}_S and $\mathcal{H}_{S'}$ be the absolute convex hulls of $k_1 \ldots k_n$ and $k'_1 \ldots k'_n$ respectively. Then for any $0 < \epsilon < 2C$,

$$\Pr\left[\sup_{h\in\mathcal{H}_{S}}\inf \quad \quad_{h'\in\mathcal{H}_{S'}}\|h-h'\|>\epsilon\right]\leq \mathcal{N}\left(\mathbf{B}_{1}',\tfrac{\epsilon}{4C}\right)\cdot n\cdot\exp\left(-\frac{n\epsilon}{8C}\right).$$