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Motivation : A human-robot interaction problem

We are currently building robotic systems which must deal with :

noisy/partial sensing of their environments,
observations that are discrete/continuous and structured
poor model of sensors and actuators.

SmartWheeler Platform Interaction Architecture

[Pineau et al., 2007]

Despite all this, we expect the robot to behave in an engaging and
reasonable manner !
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Typical ways of solving such problems :

Customized solution : Design a script (e.g. finite-state machine)
fully describing the possible interactions.

Supervised Learning : Learn model from data, then plan with the
learned model.

Reinforcement Learning : Learn directly how to act, through
trial-and-error interactions with the environment.
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Motivation : A treatment design problem

We are also optimizing sequences of medical treatment, which are
subject to :

high-dimensional, noisy input spaces,
real-time decision-making in diverse environments,
learning from very small sample sets.

Deep-brain stimulation

[Guez et al., 2008]

Despite all this, we expect the intelligent agent to achieve effective
seizure suppresion !
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What do we need for tackling real-world problems ?

Flexible learning
Learning from few data.
Online model adaptation.
Ability to specify domain knowledge (features, priors, etc.).

Methods that can deal with :
partial state observability,
structured representations.
complex observations,

Ability to maximize expected return based on current
state of information.
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Partially Observable Markov Decision Processes

POMDP Model Definition
S : Set of states (unobservable by the agent)
A : Set of actions
T (s,a, s′) = Pr(s′|s,a), transition probabilities
R(s,a) ∈ R, immediate rewards
γ : discount factor
Z : Set of observations
O(s′,a, z) = Pr(z|s′,a), the observation probabilities
b0(s) : Initial state distribution

Belief monitoring via Bayes rule :
bt (s′) = ηO(s′,at−1, zt )

∑
s∈S T (s,at−1, s′)bt−1(s)

Value function optimization :

V ∗(b) = maxa∈A
[
R(b,a) + γ

∑
z∈Z Pr(z|b,a)V ∗(τ(b,a, z))

]
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Motivation

Given
A POMDP problem domain with unknown dynamics.
The ability to sample trajectories from this domain.

For today’s talk, consider two cases :
1 Assume the trajectories have labeled state information, but you

can’t control the choice of action→ Batch data
2 Assume you can control the agent during data collection, but the

states are only partially observable→ Online data

Probabilistic Decision-Making Under Model Uncertainty Joelle Pineau 7 / 41



Introduction Variance of Value Function Bayes-Adaptive POMDPs

Motivation

Given
A POMDP problem domain with unknown dynamics.
The ability to sample trajectories from this domain.

For today’s talk, consider two cases :
1 Assume the trajectories have labeled state information, but you

can’t control the choice of action→ Batch data
2 Assume you can control the agent during data collection, but the

states are only partially observable→ Online data

Probabilistic Decision-Making Under Model Uncertainty Joelle Pineau 7 / 41



Introduction Variance of Value Function Bayes-Adaptive POMDPs

Motivation

Given
A POMDP problem domain with unknown dynamics.
The ability to sample trajectories from this domain.

For today’s talk, consider two cases :
1 Assume the trajectories have labeled state information, but you

can’t control the choice of action→ Batch data
2 Assume you can control the agent during data collection, but the

states are only partially observable→ Online data

Probabilistic Decision-Making Under Model Uncertainty Joelle Pineau 7 / 41



Introduction Variance of Value Function Bayes-Adaptive POMDPs

Let’s start with a simple case

Given
A POMDP problem domain with unknown dynamics
Sample trajectories of two policies (with labeled state
information)

Ask
Which policy is better ?
How confident are we in this choice ?
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Robot-Human Interaction Example

Dialogue management problem

Human operator issues
commands such as :

Go to location X.
Go to location Y.

Robot perceives commands
through noisy speech
recognition output.
Robot has the option to either
ask for clarification, or go to
a given location.

SmartWheeler

SmartWheeler robotic wheelchair
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Finite State Controller

Quick recap of POMDP methods

The policy is a function mapping belief states to actions.
The value is a function mapping belief states to the expected
return of running that policy.
The value function in the finite horizon is piecewise linear.
A policy can be represented as a finite state controller.

Policy as a Finite State Controller

goto x

ask

x/y

ask

x

y
x

asky
x

goto y

y
x/y

Corresponding Value Function
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Finite State Controller

Policy Evaluation (matrix form)

V = R + γTOΠV
V = (I − γTOΠ)−1R

Definition
V : coefficients of piecewise linear value function
R : coefficients of piecewise linear immediate reward
T : transition model under given policy
O : observation model under given policy
Π : state transitions of the finite state controller

[Sondik, 1971 ; Hansen, 1998]
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Estimating the Variance in the Value Function

Model Error
Most POMDP solvers assume perfect T and O models.
In practice, models are often imperfect estimates.

Designed by experts.
Estimated using Expectation-Maximization.
Estimated from recorded trajectories with labeled state
information.
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Model Error

Frequentist Approach to Estimating the Model

T̂a(i , j) =
Na

ij

Na
i
, Ôa(i , j) =

Ma
ij

Ma
i

Error Terms
With finite samples :

T̂ = T + T̃ , Ô = O + Õ

Assume error terms are unbiased and independent :

E [T̃ ] = E [Õ] = E [T̃ Õ] = 0

Covariance terms can be estimated from data.
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Variance in Value Function

Empirical Value Function

V̂ = (I − γT̂ ÔΠ)−1R

= (I − γ(T + T̃ )(O + Õ)Π)−1R Substitute model error

=
∞∑

k=0

γk fk R Taylor expansion

Where

fk = (X (T̃OΠ + T ÕΠ + T̃ ÕΠ))k X
X = (I − γTOΠ)−1

We consider a 2nd order approximation of the Taylor series.
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Error in Value Function Estimate

First Moment

E [V̂ ] = V + γ2E [f2]R

Second Moment

E [V̂ V̂ T ] = VV T + γ2(E [f1RRT f T
1 ])

+γ2(E [f0RRT f T
2 ]) + γ2(E [f2RRT f T

0 ])

Covariance

E [V̂ V̂ T ]− E [V̂ ]E [V̂ ]T = γ2(E [f1RRT f T
1 ])
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Dialogue Manager

Testing Accuracy of Estimates

Fix true models T and O
Generate N test cases

each contains fixed number
of samples

For each test case :
calculate V̂ (b0).
calculate std. dev. over
V̂ (b0) using our method.

Measure how often :
|V (b0)− V̂ (b0)| < 1 ∗ std .dev .

|V (b0)− V̂ (b0)| < 2 ∗ std .dev .

SmartWheeler

SmartWheeler robotic wheelchair
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Dialogue Manager

Testing Accuracy of Estimates
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Dialogue Manager
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Comparing treatment strategies for chronic illness

Goal : optimize treatment design such as to minimize symptom severity.

Challenges : small data set, different number of samples per treatment.

Other concern : some treatments may be preferred by some patients.

Comparing Policies (2 std.dev.)
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Discussion

Summary

Using empirical models introduces variance in the calculated
value function.
We provide a way to estimate this variance.

Technique presented today is a generalization of earlier work by
Mannor et al. (2004) for the MDP case.

This is useful to quantify performance variation in critical task
domains.

Let’s kick it up a notch :

What if we don’t have the state labels ?
And we have control over how the data is collected ?
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Part 2 :

Given
A POMDP problem domain with unknown dynamics.
The ability to sample trajectories from this domain.

Let’s now consider the second case :
1 Assume the trajectories have labeled state information, but you

can’t control the choice of action→ Batch data
2 Assume you can control the agent during data collection, but the

states are only partially observable→ Online data
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Bayesian Reinforcement Learning

General Idea :
Define prior distributions over all unknown parameters.
Update posterior via Baye’s rule as experience is acquired.
Optimize action choice w.r.t. posterior distribution over model.

Allows us to :
Include prior knowledge explicitly.
Perform learning as necessary to accomplish the task.
Consider model uncertainty during planning.
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Recall the POMDP model definition

POMDP model :
S : Set of states (unobservable by the agent)
A : Set of actions
T (s,a, s′) = Pr(s′|s,a), transition probabilities
R(s,a) ∈ R, immediate rewards
γ : discount factor
Z : Set of observations
O(s′,a, z) = Pr(z|s′,a), the observation probabilities
b0(s) : Initial state distribution

How should we choose actions if the parameters T and O are
uncertain ?
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Bayesian RL in Finite MDPs

In Finite MDPs : ([Dearden et al. 99], [Duff 02], [Poupart et al. 06])

Maintain counts φa
ss′ of number of times the transition s a→ s′ is

observed, starting from prior φ0.

Counts define Dirichlet prior/posterior over T .

Planning according to φ is an MDP problem itself :
S′ : physical state (s ∈ S) + information state (φ)

T ′ : describes probability of update (s, φ)
a→ (s′, φ′)
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Bayesian RL in Finite POMDPs

In Finite POMDPs (T ,O unknown) :

Let :
φa

ss′ : counts of s a→ s′

ψa
sz : counts of seeing z at s after doing a.

⇒ Decision problem over (s, φ, ψ).

Probabilistic Decision-Making Under Model Uncertainty Joelle Pineau 25 / 41



Introduction Variance of Value Function Bayes-Adaptive POMDPs

Bayes-Adaptive POMDP

Bayes-Adaptive POMDP Model ([Ross et al. NIPS’07])

S′ = S × N|S|2|A| × N|S||A||Z |

A′ = A
Z ′ = Z
Pr(s′, φ′, ψ′|s, φ, ψ, a, z) =

φa
ss′P

s′′∈S φ
a
ss′′

ψa
s′zP

z′∈Z ψ
a
s′z

I(φ′, φ+ δa
ss′)I(ψ

′, ψ+ δa
s′z)

R′(s, φ, ψ, a) = R(s,a)

Goal : Maximize return under partial observability of (s, φ, ψ).
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A few comments

About the Bayes-Adaptive MDP

Defines an infinite-state MDP with a known model.
The state is defined over (s, φ).
At every time step, s is observable, and φ is updated.

About the Bayes-Adaptive POMDP

Defines an infinite-state POMDP with a known model.
The state is defined over (s, φ, ψ).
At every time step, s is not observable, so neither are φ and ψ.
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Question

How can we update counters φ and ψ, if we don’t observe s ?

(Note : this is the basic problem for classical RL in partially
observable environments.)
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Belief in BAPOMDPs

Let
b0 : initial belief over original state space
φ0, ψ0 : initial counts (prior on T ,O)

Initial belief of the BAPOMDP :

b′0(s, φ, ψ) = b0(s)I(φ, φ0)I(ψ,ψ0)

Monitoring the belief :

The belief defines a mixture of Dirichlets over T ,O.
Allows us to learn the unknown POMDP model.
Computing bt exactly is in O(|S|t+1) - VERY LARGE !
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Theoretical results

We can bound the error introduced in the value function due to
differences in model posteriors.

Theorem 1 :

sup
α∈Γt ,s∈S

|Vα
t (s, φ, ψ)− Vα

t (s, φ′, ψ′)| ≤

2γ||R||∞
(1−γ)2 sup

s,s′∈S,a∈A

[
Dsa

S (φ, φ′) + Ds′a
Z (ψ,ψ′)

+ 4
ln(γ−e)

(P
s′′∈S|φa

ss′′−φ
′a
ss′′ |

(N sa
φ +1)(N sa

φ′+1) +
P

z∈Z |ψa
s′z−ψ

′a
s′z |

(N s′a
ψ +1)(N s′a

ψ′ +1)

)]
where :
N sa
φ =

∑
s′∈S φ

a
ss′ , N sa

ψ =
∑

z∈Z ψ
a
sz ,

Dsa
S (φ, φ′) =

∑
s′∈S

∣∣∣∣φa
ss′
N sa
φ
− φ′ass′
N sa
φ′

∣∣∣∣ Dsa
Z (ψ,ψ′) =

∑
z∈Z

∣∣∣∣ ψa
sz
N sa
ψ
− ψ′asz
N sa
ψ′

∣∣∣∣.
Nice fancy math ! But how good is this value function really ?
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Finite POMDP Approximation

We can bound the error introduced in the value function when we
approximate the BAPOMDP by thresholding count vectors.

Theorem 2 :

To achieve |Ṽα
t (Pε(s, φ, ψ))− Vα

t (s, φ, ψ)| < ε
1−γ ,

where α̃t is computed from Mε and αt is computed from M,

define ε′ = ε(1−γ)2

8γ||R||∞ , ε′′ = ε(1−γ)2 ln(γ−e)
32γ||R||∞ ,

Nε
S = max

(
|S|(1+ε′)

ε′ , 1
ε′′ − 1

)
, Nε

Z = max
(
|Z |(1+ε′)

ε′ , 1
ε′′ − 1

)
.

Ok ! We know how many samples we need to get an ε-optimal
solution. But is this practical ?
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Approximate Belief Monitoring

Problem : Computing bt exactly in a BAPOMDP is in O(|S|t+1).

Use particle filters for efficient approximation of the belief :

Monte Carlo : Perform belief update by sampling K particles and
state transitions.
K Most Likely : After each belief update, keep only the K
particles with highest probability.
Weighted Distance Metric : After each belief update, use a
greedy algorithm to pick the K particles which best fit the
posterior (using the distance metric in Theorem 1).
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Approximation Planning in BAPOMDPs
We still need to optimize a policy :

Pr(s, φ, ψ|φ0, ψ0,a1, z1, ...,at−1, zt−1)→ a

This involves solving an infinite-state POMDP !
It can be solved exactly for finite horizons given prior (φ0, ψ0).

Monte Carlo Online Planning (Receding Horizon Control) :
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Experimental Results

Follow :
A robot has to follow an individual within a known environment.
There are 2 possible individuals with different motion behaviors.
The behaviors are unknown a priori.
The individual changes at the beginning of each trajectory, and
can only be identified by observations of the behavior.
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Experimental Results

Expected return :
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Experimental Results

Model Accuracy :
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Experimental Results

Planning time :
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Summary

We extended the model-based bayesian RL framework to handle
partially observable domains.

Optimal policy maximizes long-term return (given the prior),
simultaneously :

Exploring to learn the model.
Identifying the system’s state.
Gathering rewards.

Monte Carlo methods can be used to achieve tractable (approximate)
belief monitoring and planning.
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Recent work

Problem : Most real-world domains are represented using many
state features. Will this scale to such large domains ? What if there
are dependencies between state variables ?

Recent work has extended the bayesian RL framework to continuous
domains (Ross et al., ICRA’08) and structured domains (Ross et al.,
UAI’08).
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Conclusion

Donald Rumsfeld once said :

As we know
There are known knowns.
There are things we know we know.

We also know there are known unknowns.
That is to say
We know there are some things
We do not know.

But there are also unknown unknowns,
The ones we don’t know
We don’t know.

My talk today is really about turning those unknown unknowns
into known unknows.
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