Recognition by Association

ask not "What is this?" but "What is it like?"

Tomasz Malisiewicz
 joint work with Alyosha Efros

October 27, 2008 Learning Lunch

Goal and Approach

- Goal: Recognize many different types of objects inside an image
- Observation: Recognition becomes easier once we have the correct segmentation
- Approach: Use a segment-centric object representation and an exemplar-based nonparametric recognition model

Tomasz Malisiewicz, Alexei A. Efros. Recognition by Association via Learning Per-exemplar Distances. In CVPR, June 2008.

Understanding an Image

Object naming

sky

building

flag

banner
face
 ssanishara

carside byfelfei, Fergus \& morralb?

Object naming / Object categorization

sky

building

carcide by fee Fei, Fergus \& morralbal

Object naming / Object categorization

 sky
building

flag

face

cars

Different way of looking at recognition

Input Image

Different way of looking at recognition

Different way of looking at recognition

Our Contributions

- Posing Recognition as Association
-Use large number of object exemplars

Our Contributions

- Posing Recognition as Association
-Use large number of object exemplars
- Learning Object Similarity
-Different distance function per exemplar

Our Contributions

- Posing Recognition as Association
-Use large number of object exemplars
- Learning Object Similarity
-Different distance function per exemplar
- Recognition-Based Object Segmentation
-Use multiple segmentation approach

Object Exemplars

- Extract objects from LabelMe with labels such as road, car, sky, tree, building, person
- Use the segmentation masks and labels provided by LabelMe annotators

Lobelme Dataset

12,905 Object Exemplars
17| unique 'labels'

B. C. Russell, A. Torralba, K. P. Murphy, W. T. Freeman, LabelMe: a database and webbased tool for image annotation. International Journal of Computer Vision, 1May, 2008.

Measuring Similarity

- How are objects similar?

Measuring Similarity

- How are objects similar?

Measuring Similarity

- How are objects similar?

Measuring Similarity

- How are objects similar?

Measuring Similarity

- How are objects similar?

Exemplar Representation

Type	Name	Dimension
Shape	Centered Mask	$32 \times 32=1024$
	BB Extent	2
	Pixel Area	1
Texture	Right Boundary Tex-Hist	100
	Top Boundary Tex-Hist	100
	Left Boundary Tex-Hist	100
	Bottom Boundary Tex-Hist	100
	Interior Tex-Hist	100
Color	Mean Color	3
	Color std	3
	Color Histogram	33
Location	Absolute Mask	Top Height
	Bot Height	1
		1

Centered Mask

Texton Histogram

Boundary Texton Hist

Absolute Position Mask

Top \& Bottom Height

Color Histogram

50

Learning a Per-Exemplar Similarity Measure

- We create a scalar distance between two objects by weighing the elementary distances differently
- A different set of weights -- a distance function -is learned per exemplar
[1] Andrea Frome, Yoram Singer, Jitendra Malik. "Image Retrieval and Recognition Using Local Distance Functions." In NIPS, 2006.
[2] Andrea Frome, Yoram Singer, Fei Sha, Jitendra Malik. "Learning Globally-Consistent Local Distance Functions for Shape-Based Image Retrieval and Classification." In ICCV, 2007.

Learning Distance Functions

Learning Distance Functions

Learning Distance Functions

Learning Distance Functions

Iterative Optimization

$$
\begin{aligned}
\boldsymbol{\alpha}^{k} & =\underset{\boldsymbol{\alpha}}{\operatorname{argmin}} \sum_{i \in C} \alpha_{i} L\left(-\mathbf{w}^{\mathbf{k}} \cdot \mathbf{d}_{\mathbf{i}}\right) \\
\mathbf{w}^{k+1} & =\underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i: \alpha_{i}^{k}=1} L\left(-\mathbf{w} \cdot \mathbf{d}_{i}\right)+\sum_{i \notin C} L\left(\mathbf{w} \cdot \mathbf{d}_{i}\right)
\end{aligned}
$$

alpha sums to $\mathrm{K}=10$ (forced number of similar exemplars)
L : squared hinge-loss function (SVM optimization)
initialize with texton histogram distance (works well for a wide array of objects!)

Non-parametric density estimation

Non-parametric density estimation

Non-parametric density estimation

Exemplar Graph

Visualizing Distance Functions (Training Set)

Visualizing Distance Functions (Training Seat)

Distance Function

Visualizing Distance Functions (Training Set)

Recognition Time

Object Segmentation via Recognition

- Generate Multiple Segmentations (Hoiem 2005, Russell 2006, Malisiewicz 2007*)
- Mean-Shift and Normalized Cuts
- Use pairs and triplets of adjacent segments
- Generate about 10,000 segments per image

- Enhance training with bad segments
- Apply learned distance functions to bottom-up segments

Tomasz Malisiewicz, Alexei A. Efros. Improving Spatial Support for Objects via Multiple Segmentations, In BMVC 2007.

Top Object Hypotheses in Test Set

Bottom-Up
Segments

Toward Image Parsing

Toward Image Parsing

Toward Image Parsing

Observations + Conclusions

- Exemplar model and segment-centric features work well for both free-form stuff like grass and fixed-extent things like cars
- Distance Functions are good at localizing objects for which we have observed many instances
- Success relies on having ground truth segmentations during learning
- Need a clever way to integrate object hypotheses to parse images

