Recognition by Association

ask not"What is this?" but"What is it **like**?"

Tomasz Malisiewicz joint work with Alyosha Efros

> October 27, 2008 Learning Lunch

Goal and Approach

• **Goal**: Recognize many different types of objects inside an image

2

- Observation: Recognition becomes easier once we have the correct segmentation
- **Approach**: Use a segment-centric object representation and an exemplar-based nonparametric recognition model

Tomasz Malisiewicz, Alexei A. Efros. Recognition by Association via Learning Per-exemplar Distances. In CVPR, June 2008.

Understanding an Image

Object naming

Object naming / Object categorization

Object naming / Object categorization

Different way of looking at recognition

Input Image

of looking at recognition

of looking at recognition

Our Contributions

Posing Recognition as Association

-Use large number of object exemplars

Our Contributions

Posing Recognition as Association

-Use large number of object exemplars

- Learning Object Similarity
- -Different distance function per exemplar

Our Contributions

Posing Recognition as Association

-Use large number of object exemplars

- Learning Object Similarity
- -Different distance function per exemplar

Recognition-Based Object Segmentation
Use multiple segmentation approach

Object Exemplars

- Extract objects from LabelMe with labels such as road, car, sky, tree, building, person
- Use the segmentation masks and labels provided by LabelMe annotators

Lobel Dataset

12,905 Object Exemplars 171 unique 'labels'

B. C. Russell, A. Torralba, K. P. Murphy, W. T. Freeman, LabelMe: a database and webbased tool for image annotation. International Journal of Computer Vision, 1May, 2008.

Exemplar Representation

Туре	Name	Dimension
Shape	Centered Mask	32x32=1024
	BB Extent	2
	Pixel Area	1
Texture	Right Boundary Tex-Hist	100
	Top Boundary Tex-Hist	100
	Left Boundary Tex-Hist	100
	Bottom Boundary Tex-Hist	100
	Interior Tex-Hist	100
Color	Mean Color	3
	Color std	3
	Color Histogram	33
Location	Absolute Mask	8x8=64
	Top Height	1
	Bot Height	1

Centered Mask

Texton Histogram

Boundary Texton Hist

Absolute Position Mask

1 2 3 4 5 6 7 8

Top & Bottom Height

Learning a Per-Exemplar Similarity Measure

- We create a scalar distance between two objects by weighing the elementary distances differently
- A different set of weights -- a distance function -is learned per exemplar

[1] Andrea Frome, Yoram Singer, Jitendra Malik. "Image Retrieval and Recognition Using Local Distance Functions." In NIPS, 2006.

[2] Andrea Frome, Yoram Singer, Fei Sha, Jitendra Malik. "Learning Globally-Consistent Local Distance Functions for Shape-Based Image Retrieval and Classification." In ICCV, 2007.

Learning Distance Functions

Learning Distance Functions

Learning Distance Functions $f(\mathbf{w}, \boldsymbol{\alpha}) = \sum_{i \in C} \alpha_i L(-\mathbf{w} \cdot \mathbf{d}_i) + \sum_{i \notin C} L(\mathbf{w} \cdot \mathbf{d}_i)$

Iterative Optimization

$$\boldsymbol{\alpha}^{k} = \underset{\boldsymbol{\alpha}}{\operatorname{argmin}} \sum_{i \in C} \alpha_{i} L(-\mathbf{w}^{k} \cdot \mathbf{d}_{i})$$
$$\mathbf{w}^{k+1} = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{i:\alpha_{i}^{k}=1} L(-\mathbf{w} \cdot \mathbf{d}_{i}) + \sum_{i \notin C} L(\mathbf{w} \cdot \mathbf{d}_{i})$$

alpha sums to K=10 (forced number of similar exemplars) L: squared hinge-loss function (SVM optimization) initialize with texton histogram distance (works well for a wide array of objects!)

Non-parametric density estimation

Non-parametric density estimation

Non-parametric density estimation

Exemplar Graph

Visualizing Distance Functions (Training Set)

Visualizing Distance Functions (Training Set)

Distance Function

Visualizing Distance Functions (Training Set)

Object Segmentation via Recognition

- Generate Multiple Segmentations (Hoiem 2005, Russell 2006, Malisiewicz 2007*)
- Mean-Shift and Normalized Cuts
- Use pairs and triplets of adjacent segments
- Generate about 10,000 segments per image

- Enhance training with bad segments
- Apply learned distance functions to bottom-up segments

Tomasz Malisiewicz, Alexei A. Efros. Improving Spatial Support for Objects via Multiple Segmentations, In BMVC 2007.

Top Object Hypotheses in Test Set

Bottom-Up Segments

Toward Image Parsing

Toward Image Parsing

Toward Image Parsing

31

Observations + Conclusions

- Exemplar model and segment-centric features work well for both free-form stuff like grass and fixed-extent things like cars
- Distance Functions are good at localizing objects for which we have observed many instances
- Success relies on having ground truth segmentations during learning
- Need a clever way to integrate object hypotheses to parse images