Activized Learning:

Transforming Passive to Active with Improved Label Complexity

Steve Hanneke

Machine Learning Department Carnegie Mellon University shanneke@cs.cmu.edu

Steve Hanneke 4

An Example: Threshold Classifiers

A simple activizer for any threshold-learning algorithm.

An Example: Threshold Classifiers

A simple activizer for any threshold-learning algorithm.

Take n/2 unlabeled examples, request their labels

Locate the closest -/+ points: a,b

Estimate P([a,b]), and sample \approx n/(4P([a,b])) unlabeled examples Request the labels in [a,b]

Label rest ourselves.

Train passive alg on all examples.

Used only n label requests,

but get a classifier trained on $\Omega(n^2)$ examples!

Improvement in label complexity over passive.

(in this case, apply idea sequentially to get exponential improvement)

+ + +

Outline

- Formal model
- Exciting New Results 😇
- Dealing with noise?
- Conclusions & open problems

Formal Model

 \mathcal{X} : Instance space

 \mathbb{C} : Concept space (a set of classifiers $h: \mathcal{X} \to \{-1, 1\}$)

d: VC dimension of \mathbb{C} (assume $d < \infty$)

 \mathcal{D} : Distribution over \mathcal{X}

Unknown target function $f \in \mathbb{C}$ $er(h) = \mathbb{P}_{X \sim \mathcal{D}}[h(X) \neq f(X)]$

Sequence of i.i.d. training examples $x_1, x_2, \ldots \sim \mathcal{D}$

Algorithm chooses any x_i , receives label $f(x_i)$, repeat

The objective is to produce some $h : \mathcal{X} \to \{-1, 1\}$ s.t. er(h) is small.

Formal Model

Definition: An algorithm $A(n, \delta)$ achieves *label complexity* $\Lambda(\epsilon, \delta, f, \mathcal{D})$ for \mathbb{C} if it outputs a classifier h_n after at most n label requests, and for any target function $f \in \mathbb{C}$, distribution $\mathcal{D}, \epsilon > 0, \delta > 0$, for any $n \ge \Lambda(\epsilon, \delta, f, \mathcal{D})$,

 $\mathbb{P}[er(h_n) \le \epsilon] \ge 1 - \delta.$

Definition: Suppose A_p is a passive algorithm achieving a label complexity $\Lambda_p(\epsilon, \delta, f, \mathcal{D})$ for \mathbb{C} . A (meta-)algorithm A_a activizes A_p for \mathbb{C} if $A_a(A_p, n, \delta)$ achieves a label complexity $\Lambda_a(\epsilon, \delta, f, \mathcal{D})$ for \mathbb{C} , where $\exists c < \infty$ s.t. $\forall f \in \mathbb{C}, \mathcal{D} : 1 \ll \Lambda_p(\epsilon, \delta, f, \mathcal{D}) \ll \infty$,

$$\Lambda_a(c\epsilon, c\delta, f, \mathcal{D}) = o(\Lambda_p(\epsilon, \delta, f, \mathcal{D})).$$

Recall $s(\epsilon) = o(t(\epsilon))$ iff $\lim_{\epsilon \to 0} \frac{s(\epsilon)}{t(\epsilon)} = 0$.

Steve Hanneke 11

Naïve Approach

Algorithm: NaiveActivizer $(\mathcal{A}_p, n, \delta)$ 0. Sample n/2 examples Q, request their labels 1. Let $V \leftarrow \{h \in \mathbb{C} : er_Q(h) = 0\}$ 2. Estimate $\hat{\Delta} \approx \mathbb{P}(x : \exists h_1, h_2 \in V \text{ s.t. } h_1(x) \neq h_2(x))$ 3. Sample $\approx n/(4\hat{\Delta})$ examples \mathcal{L} 4. Request label of all x s.t. $\exists h_1, h_2 \in V : h_1(x) \neq h_2(x)$ 5. Label the rest ourselves 6. Return the output of $\mathcal{A}_p(\mathcal{L}, \delta)$

Produces a perfectly labeled data set, which we can feed into any passive algorithm! So we get a natural fallback guarantee.

But does it always improve over the passive algorithm?

Naïve Approach

Algorithm: NaiveActivizer $(\mathcal{A}_p, n, \delta)$ 0. Sample n/2 examples Q, request their labels 1. Let $V \leftarrow \{h \in \mathbb{C} : er_Q(h) = 0\}$ 2. Estimate $\hat{\Delta} \approx \mathbb{P}(x : \exists h_1, h_2 \in V \text{ s.t. } h_1(x) \neq h_2(x))$ 3. Sample $\approx n/(4\hat{\Delta})$ examples \mathcal{L} 4. Request label of all x s.t. $\exists h_1, h_2 \in V : h_1(x) \neq h_2(x)$ 5. Label the rest ourselves 6. Return the output of $\mathcal{A}_p(\mathcal{L}, \delta)$

+

A more subtle example: Intervals

0

Naïve Approach

Algorithm: NaiveActivizer $(\mathcal{A}_p, n, \delta)$ 0. Sample n/2 examples Q, request their labels 1. Let $V \leftarrow \{h \in \mathbb{C} : er_Q(h) = 0\}$ 2. Estimate $\hat{\Delta} \approx \mathbb{P}(x : \exists h_1, h_2 \in V \text{ s.t. } h_1(x) \neq h_2(x))$ 3. Sample $\approx n/(4\hat{\Delta})$ examples \mathcal{L} 4. Request label of all x s.t. $\exists h_1, h_2 \in V : h_1(x) \neq h_2(x)$ 5. Label the rest ourselves 6. Return the output of $\mathcal{A}_p(\mathcal{L}, \delta)$

A more subtle example: Intervals

A Simple Activizer

Algorithm: SimpleActivizer $(\mathcal{A}_p, n, \delta)$ 0. Sample n/3 examples Q, request their labels 1. Let $V \leftarrow \{h \in \mathbb{C} : er_Q(h) = 0\}, S \leftarrow \{\}$ 2. For $k = 1, 2, \ldots, d + 1$ (where $d = VC(\mathbb{C})$) 3. Estimate $\hat{\Delta} \approx \mathbb{P}(x : V \text{ shatters } S \cup \{x\})$ 4. Sample $\approx n/(6d\hat{\Delta})$ examples \mathcal{L}_k 5. Request label of all x s.t. V shatters $S \cup \{x\}$ 6. Label the rest ourselves (opposite to unrealizable labels) 7. Sample x_k s.t. V shatters $S \cup \{x_k\}$ (if exists), add to S8. Return ActiveSelect($\{\mathcal{A}_p(\mathcal{L}_1, \delta), \ldots, \mathcal{A}_p(\mathcal{L}_{d+1}, \delta)\}, n/3$)

Subroutine: ActiveSelect $(\{h_1, h_2, \ldots, h_{d+1}\}, m)$

0. For each pair h_i, h_j

- 1. Sample $m/(d+1)^2$ examples x s.t. $h_i(x) \neq h_j(x)$
- 2. Let m_{ij} denote the number of mistakes h_i makes
- 3. Return $h_{\hat{i}}$, where $\hat{i} = \operatorname{argmin}_i \max_j m_{ij}$

A Simple Activizer

Algorithm: SimpleActivizer $(\mathcal{A}_p, n, \delta)$ 0. Sample n/3 examples Q, request their labels 1. Let $V \leftarrow \{h \in \mathbb{C} : er_Q(h) = 0\}, S \leftarrow \{\}$ 2. For $k = 1, 2, \ldots, d + 1$ (where $d = VC(\mathbb{C})$) 3. Estimate $\hat{\Delta} \approx \mathbb{P}(x : V \text{ shatters } S \cup \{x\})$ 4. Sample $\approx n/(6d\hat{\Delta})$ examples \mathcal{L}_k 5. Request label of all x s.t. V shatters $S \cup \{x\}$ 6. Label the rest ourselves (opposite to unrealizable labels) 7. Sample x_k s.t. V shatters $S \cup \{x_k\}$ (if exists), add to S8. Return ActiveSelect($\{\mathcal{A}_p(\mathcal{L}_1, \delta), \ldots, \mathcal{A}_p(\mathcal{L}_{d+1}, \delta)\}, n/3$)

Intervals revisited

Does This Activize Any Passive Algorithm?

This Activizes Any Passive Algorithm!

Theorem: For any \mathbb{C} , SimpleActivizer activizes any passive learning algorithm.

Corollary: For any \mathbb{C} , there is an active learning algorithm that achieves a label complexity $\Lambda_a(\epsilon, \delta, f, \mathcal{D})$ such that $\forall f \in \mathbb{C}, \mathcal{D}$,

 $\Lambda_a(\epsilon, \delta, f, \mathcal{D}) = o(1/\epsilon).$

[HLW94] passive algorithm has O(1/E) sample complexity.

This Activizes Any Passive Algorithm!

Theorem: For any \mathbb{C} , SimpleActivizer activizes any passive learning algorithm. Proof idea: if $\hat{\Delta} \to 0$ for k = 1, we're done. Otherwise, $\lim_{n\to\infty} \mathbb{P}\{x : \exists h_1, h_2 \in V, h_1(x) \neq h_2(x)\} > c$, for some c. For large enough n, x_1 will be in this limiting region. In particular, $\inf_{h \in V:h(x)=+1} er(h) = \inf_{h \in V:h(x)=-1} er(h) = 0$. So (w.p.1), for any x agreed upon by all $h \in V: h(x_1) = +1$ or all $h \in V: h(x_1) = -1$, the agreed upon label is correct.

So basically, we know the label of any x s.t. $\{x_1, x\}$ is not shattered. Repeat the argument for k > 1 until we get a k where $\hat{\Delta} \to 0$, but then $|\mathcal{L}_k| \gg n$, so we're done.

Efficiency?

- Need to be able to test shatterability of a set of \leq d points, subject to consistency with a set of O(n) labeled examples.
- For some concept spaces, could be exponential in d (or worse).
- But in many cases, it may be efficient. (e.g., linear separators?)

Dealing with Noise

Have an arbitrary distribution \mathcal{D}_{XY} over $\mathcal{X} \times \{-1, +1\}$, so label complexity for \mathbb{C} is written $\Lambda(\epsilon, \delta, \mathcal{D}_{XY})$. Now ϵ represents excess over best error rate in \mathbb{C} : want to guarantee

$$\mathbb{P}\left[er(h_n) - \inf_{f \in \mathbb{C}} er(f) \le \epsilon\right] \ge 1 - \delta.$$

Dealing with Noise

Replace version space $V = \{h \in \mathbb{C} : er_Q(h) = 0\}$ with noise-robust version space

$$V = \{h \in \mathbb{C} : er_Q(h) - \min_{h' \in \mathbb{C}} er_Q(h') \le O(n^{-1/2})\}.$$

Applied to a particular passive algorithm, this modification of SimpleActivizer achieves label complexity¹

$$\Lambda_a(\epsilon, \delta, \mathcal{D}_{XY}) = o(1/\epsilon^2).$$

Under Tsybakov's noise conditions w/ exponent κ , a more careful variant achieves

$$\Lambda_a(\epsilon, \delta, \mathcal{D}_{XY}) = o(1/\epsilon^{2-1/\kappa}).$$

Open Question: Can we activize any passive algorithm, even with noise? Open Question: Can we activize some empirical error minimizing algorithm?

¹Technically, an additional slight modification is needed to handle the case where the Bayes optimal classifier is not in C. Details included in a forthcoming paper. Steve Hanneke

Conclusions & Open Questions

- Can activize any passive learning algorithm (in the zero-error, finite VC dimension case)
- Question: What about infinite VC dimension?
- Question: Can we give more detailed bounds on Λ_a ?
- Question: Can we always activize, even when there is noise?

Thank You

Steve Hanneke 24