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Activized Learning: 
Transforming Passive to Active with Improved Label Complexity
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e.g., Das04, Das05, DKM05, BBL06, Kaa06, Han07a&b, BBZ07, DHM07, BHW08
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Are there general-purpose activizers 
that strictly improve the label 

complexity of any
 

passive algorithm?



An Example: Threshold Classifiers
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A simple activizer for any threshold-learning algorithm.
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An Example: Threshold Classifiers
A simple activizer for any threshold-learning algorithm.

Steve Hanneke    8

+-- +-------- + + + +

Locate the closest -/+ points: a,b
Take n/2 unlabeled examples, request their labels

Used only n label requests, 

but get a classifier trained on Ω(n2) examples!

Improvement in label complexity over passive.

(in this case, apply idea sequentially to get exponential improvement)

Estimate P([a,b]), and sample ≈
 

n/(4P([a,b])) unlabeled examples
Request the labels in [a,b]

- -- - + + + +

a b

Label rest ourselves.
Train passive alg on all examples.



Outline
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Formal model

Exciting New Results ☺

Dealing with noise?

Conclusions & open problems



Formal Model
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Formal Model



Naïve Approach
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Produces a perfectly labeled data set, which we can feed into any passive algorithm!
So we get a natural fallback guarantee.

But does it always improve over the passive algorithm?



Naïve Approach
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A more subtle example: Intervals



Naïve Approach
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A more subtle example: Intervals

Suppose the target labels everything “-1”

-- - - - - --- - - - - -

Passive algorithm still trained with just O(n) examples.  No improvements.  



A Simple Activizer
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A Simple Activizer
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Intervals revisited

Again, suppose the target labels everything “-1”

-- - - - - --- - - - - -

Passive algorithm trained on Ω(n2) samples.  Improved label complexity.  ☺

x1

- - - - - - - -- - --

(can apply steps 0/1 and 5 sequentially, updating V after every label request, for more savings)



Does This Activize Any
 

Passive Algorithm?
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This Activizes Any
 

Passive Algorithm!
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This Activizes Any
 

Passive Algorithm!



Efficiency?
Need to be able to test shatterability of a set of ≤ d points, 
subject to consistency with a set of O(n) labeled examples.

For some concept spaces, could be exponential in d (or worse).

But in many cases, it may be efficient. (e.g., linear separators?)
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Dealing with Noise

Steve Hanneke    21



Dealing with Noise
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1Technically, an additional slight modification is needed to handle the case where the Bayes optimal 
classifier is not in C.  Details included in a forthcoming paper.



Conclusions & Open Questions
Can activize any passive learning algorithm                          
(in the zero-error, finite VC dimension case)

Question: What about infinite VC dimension?

Question: Can we give more detailed bounds on Λa?
Question: Can we always activize, even when there is noise?
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Thank You
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