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Don’t use model complexity as your 
learning bias …

Use inference complexity.



The Goal
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Learning algorithms Inference algorithms
The actual task

This talk:
• How to learn accurate and efficient models by 

tightly integrating learning and inference
• Experiments: exact inference in < 100ms 

in models with treewidth > 100



Outline

• Standard solutions (and why they fail)
• Background

– Learning with Bayesian networks
– Inference with arithmetic circuits

• Learning arithmetic circuits
– Scoring
– Search
– Efficiency

• Experiments
• Conclusion



Solution 1: Exact Inference
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Solution 2: Approximate Inference
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Answers!Data Model Approximation

Approximations are often too inaccurate.
More accurate algorithms tend to be slower. 

SLOW



Solution 3: Learn a tractable model 
Related work: Thin junction trees

Answers!Data Jointree

Polynomial in data, but still exponential in treewidth

[E.g.: Chechetka & Guestrin, 2007]



Thin junction trees are thin

• Maximum effective treewidth is 2-5
• We have learned models with treewidth >100

Their junction trees Our junction trees



Solution 3: Learn a tractable model 
Our work: Arithmetic circuits 
with penalty on circuit size
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Outline

• Standard solutions (and why they fail)
• Background

– Learning with Bayesian networks
– Inference with arithmetic circuits

• Learning arithmetic circuits
– Overview
– Optimizations

• Experiments
• Conclusion



Bayesian networks

Problem: Compactly represent probability 
distribution over many variables

Solution: Conditional independence

P(A,B,C,D) = P(A) P(B|A) P(C|A) P(D|B,C)
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… With decision-tree CPDs

Problem: Number of parameters is exponential 
in the maximum number of parents

Solution: Context-specific independence

P(D|B,C) = B=?
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… Compiled to circuits

Problem: Inference is exponential in treewidth
Solution: Compile to arithmetic circuits
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Arithmetic circuits

• Directed, acyclic graph with single root
– Leaf nodes are inputs
– Interior nodes are addition or multiplication
– Can represent any distribution

• Inference is linear in model size!
– Never larger than junction tree
– Can exploit local structure to save time/space
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ACs for Inference
• Bayesian network: 

P(A,B,C) = P(A) P(B) P(C|A,B)
• Network polynomial: 
λA λB λC θA θB θC|AB + λ¬A λB λC θ¬A θB θC|¬AB + …

• Can compute arbitrary marginal queries by 
evaluating network polynomial.

• Arithmetic circuits (ACs) offer efficient, 
factored representations of this polynomial.

• Can take advantage of local structure such as 
context-specific independence.



BN Structure Learning

• Start with an empty network
• Greedily add splits to decision trees one 

at a time, enforcing acyclicity

[Chickering et al., 1996]

score(C,T) = log P(T|C) – kp np (C)
(accuracy – # parameters)



Key Idea
For an arithmetic circuit C on an i.i.d. training sample T:
Typical cost function:

Our cost function:

score(C,T) = log P(T|C) – kp np (C) – ke ne (C) 
(accuracy – # parameters – circuit size)

score(C,T) = log P(T|C) – kp np (C)
(accuracy – # parameters)



Basic algorithm

Following Chickering et al. (1996), we induce our statistical 
models by greedily selecting splits for the decision-tree 
CPDs. Our approach has two key differences:

1. We optimize a different objective function

2. We return a Bayesian network that has already been 
compiled into a circuit



Efficiency

Compiling each candidate AC from scratch at 
each step is too expensive.

Instead: Incrementally modify AC as we add splits.



Algorithm
Create initial product of marginals circuit
Create initial split list
Until convergence:

For each split in list
Apply split to circuit
Score result
Undo split

Apply highest-scoring split to circuit
Add new child splits to list
Remove inconsistent splits from list
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How to split a circuit
D: Parameter nodes to be split
V: Indicators for the splitting variable
M: First mutual ancestors of D and V

For each indicator λ
 

in V, 
Copy all nodes between M and D or V, 
conditioned on λ.

For each m in M, 
Replace children of m that are ancestors of 
D or V with a sum over copies of the 
ancestors times the λ

 
each copy was 

conditioned on.



Optimizations
We avoid rescoring splits every iteration by:
1. Noting that likelihood gain never changes, only 

number of edges added
2. Evaluating splits with higher likelihood gain first, 

since likelihood gain is an upper bound on score.
3. Re-evaluate number of edges added only when 

another split may have affected it (AC-Greedy).
4. Assume the number of edges added by a split only 

increases as the algorithm progresses (AC-Quick).



Experiments
We applied our algorithms (AC-Greedy, AC-Quick) to 
three real-world datasets, using the WinMine Toolkit 
as the baseline.  WinMine’s algorithm is very similar 
to that of Chickering et al. (1996).

For inference, we generated queries from the test 
data with varying numbers of evidence and query 
variables.  We used Gibbs sampling on the WinMine 
models since exact inference was not feasible.
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Inference time
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Conclusion

• Problem: Learning accurate intractable 
models = Learning inaccurate models

• Solution: Use inference complexity as 
learning bias

• Algorithm: Learn arithmetic circuits with 
penalty on circuit size

• Result: Much faster and more accurate 
inference than standard Bayes net learning



Algorithm EachMovie KDD Cup MSWeb
AC-Greedy 62ms 194ms 91ms
AC-Quick 162ms 198ms 115ms
Gibbs: 1k 7.22s 1.46s 1.89s
Gibbs: 10k 42.5s 11.3s 15.6s
Gibbs: 100k 452s 106s 154s
Gibbs: 1M 3912s 1124s 1556s



EachMovie AC-Greedy AC-Quick WinMine

Log-likelih. –55.7 –54.9 –53.7

Edges 155k 372k

Leaves 4070 6521 4830

Treewidth 35 54 281

Time >72h 22h 3m

KDD Cup AC-Greedy AC-Quick WinMine

Log-likelih. –2.16 –2.16 –2.16

Edges 382k 365k

Leaves 4574 4463 2267

Treewidth 38 38 53

Time 50h 3h 3m

MSWeb AC-Greedy AC-Quick WinMine

Log-likelih. –9.85 –9.85 –9.69

Edges 204k 256k

Leaves 1353 1870 1710

Treewidth 114 127 118

Time 8h 3h 2m



Compiling Bayes nets

• Exact inference: Jointree algorithm
• AC may be more efficient because it 

can exploit local structure, including 
determinism and context-specific 
independencies



Context-specific 
independence

• Can represent many distributions more 
efficiently with local structure

• We will focus on Bayesian networks where 
the conditional probability distributions 
(CPDs) are represented by decision trees

• This allows compact distributions even for 
nodes with many parents

• ACs can exploit local structure



SLOW
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