
Inference Complexity
As Learning Bias

Pedro Domingos
Dept. of Computer Science & Eng.

University of Washington

Joint work with Daniel Lowd

Don’t use model complexity as your
learning bias …

Use inference complexity.

The Goal

A

B C

Answers!Data Model

Learning algorithms Inference algorithms
The actual task

This talk:
• How to learn accurate and efficient models by

tightly integrating learning and inference
• Experiments: exact inference in < 100ms

in models with treewidth > 100

Outline

• Standard solutions (and why they fail)
• Background

– Learning with Bayesian networks
– Inference with arithmetic circuits

• Learning arithmetic circuits
– Scoring
– Search
– Efficiency

• Experiments
• Conclusion

Solution 1: Exact Inference

A

B C

Answers!Data Model Jointree

SLOW SLOW

Solution 2: Approximate Inference

A

B C

Answers!Data Model Approximation

Approximations are often too inaccurate.
More accurate algorithms tend to be slower.

SLOW

Solution 3: Learn a tractable model
Related work: Thin junction trees

Answers!Data Jointree

Polynomial in data, but still exponential in treewidth

[E.g.: Chechetka & Guestrin, 2007]

Thin junction trees are thin

• Maximum effective treewidth is 2-5
• We have learned models with treewidth >100

Their junction trees Our junction trees

Solution 3: Learn a tractable model
Our work: Arithmetic circuits
with penalty on circuit size

A

B C

Answers!Data

Model

Circuit

×

+ +

()

Outline

• Standard solutions (and why they fail)
• Background

– Learning with Bayesian networks
– Inference with arithmetic circuits

• Learning arithmetic circuits
– Overview
– Optimizations

• Experiments
• Conclusion

Bayesian networks

Problem: Compactly represent probability
distribution over many variables

Solution: Conditional independence

P(A,B,C,D) = P(A) P(B|A) P(C|A) P(D|B,C)

A

B C

D

… With decision-tree CPDs

Problem: Number of parameters is exponential
in the maximum number of parents

Solution: Context-specific independence

P(D|B,C) = B=?

0.2

0.5 0.7

false

false

C=?
tru

e

tru
e

… Compiled to circuits

Problem: Inference is exponential in treewidth
Solution: Compile to arithmetic circuits

λA θA

×

×

+ +

λ¬A θ¬A

×

λB θB

×

λ¬B θ¬B

×

Arithmetic circuits

• Directed, acyclic graph with single root
– Leaf nodes are inputs
– Interior nodes are addition or multiplication
– Can represent any distribution

• Inference is linear in model size!
– Never larger than junction tree
– Can exploit local structure to save time/space

λA θA

×

×

+ +

λ¬A θ¬A

×

λB θB

×

λ¬B θ¬B

×

ACs for Inference
• Bayesian network:

P(A,B,C) = P(A) P(B) P(C|A,B)
• Network polynomial:
λA λB λC θA θB θC|AB + λ¬A λB λC θ¬A θB θC|¬AB + …

• Can compute arbitrary marginal queries by
evaluating network polynomial.

• Arithmetic circuits (ACs) offer efficient,
factored representations of this polynomial.

• Can take advantage of local structure such as
context-specific independence.

BN Structure Learning

• Start with an empty network
• Greedily add splits to decision trees one

at a time, enforcing acyclicity

[Chickering et al., 1996]

score(C,T) = log P(T|C) – kp np (C)
(accuracy – # parameters)

Key Idea
For an arithmetic circuit C on an i.i.d. training sample T:
Typical cost function:

Our cost function:

score(C,T) = log P(T|C) – kp np (C) – ke ne (C)
(accuracy – # parameters – circuit size)

score(C,T) = log P(T|C) – kp np (C)
(accuracy – # parameters)

Basic algorithm

Following Chickering et al. (1996), we induce our statistical
models by greedily selecting splits for the decision-tree
CPDs. Our approach has two key differences:

1. We optimize a different objective function

2. We return a Bayesian network that has already been
compiled into a circuit

Efficiency

Compiling each candidate AC from scratch at
each step is too expensive.

Instead: Incrementally modify AC as we add splits.

Algorithm
Create initial product of marginals circuit
Create initial split list
Until convergence:

For each split in list
Apply split to circuit
Score result
Undo split

Apply highest-scoring split to circuit
Add new child splits to list
Remove inconsistent splits from list

λA θA λ¬A θ¬A λB λ¬B

×

×

Before split

+

×

× ×

λA θA|B λ¬A θ¬A|B λA θA|¬B λ¬A θ¬A|¬B

λB
λ¬B

After split

+

× ×

λA θA|BC λ¬A θ¬A|BC λA θA|B¬C λ¬A θ¬A|B¬C

λC λ¬C

+ +

+

× × × ×

+

λA λ¬A

+

× ×

θ¬A|¬BθA|¬B

× × ×

θC θ¬C

λB λB
θ¬Bλ¬BθB|C θB|¬C

How to split a circuit
D: Parameter nodes to be split
V: Indicators for the splitting variable
M: First mutual ancestors of D and V

For each indicator λ

in V,
Copy all nodes between M and D or V,
conditioned on λ.

For each m in M,
Replace children of m that are ancestors of
D or V with a sum over copies of the
ancestors times the λ

each copy was

conditioned on.

Optimizations
We avoid rescoring splits every iteration by:
1. Noting that likelihood gain never changes, only

number of edges added
2. Evaluating splits with higher likelihood gain first,

since likelihood gain is an upper bound on score.
3. Re-evaluate number of edges added only when

another split may have affected it (AC-Greedy).
4. Assume the number of edges added by a split only

increases as the algorithm progresses (AC-Quick).

Experiments
We applied our algorithms (AC-Greedy, AC-Quick) to
three real-world datasets, using the WinMine Toolkit
as the baseline. WinMine’s algorithm is very similar
to that of Chickering et al. (1996).

For inference, we generated queries from the test
data with varying numbers of evidence and query
variables. We used Gibbs sampling on the WinMine
models since exact inference was not feasible.

Learning time

1

10

100

1000

10000

KDD Cup MSWeb EachMovie

Le
a
rn

in
g

 t
im

e
 (

m
in

u
te

s)

AC-Greedy AC-Quick WinMine

Inference time

0.01

0.1

1

10

100

1000

10000

KDD Cup MSWeb EachMovie

In
fe

re
n

ce
 t

im
e
 (

s) AC-Greedy
AC-Quick
Gibbs-1k
Gibbs-10k
Gibbs-100k
Gibbs-1M

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

10% 20% 30% 40% 50%

Query variables

Gibbs-F
Gibbs-M
Gibbs-S
Gibbs-V
AC-G
AC-Q

Accuracy: EachMovie

-0.16

-0.14

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02

0

10% 20% 30% 40% 50%

Query variables

Gibbs-F
Gibbs-M
Gibbs-S
Gibbs-V
AC-G
AC-Q

Accuracy: MSWeb

-0.07

-0.06

-0.05

-0.04

-0.03

10% 20% 30% 40% 50%
Query variables

Gibbs-F
Gibbs-M
Gibbs-S
Gibbs-V
AC-G
AC-Q

Accuracy: KDD Cup

Conclusion

• Problem: Learning accurate intractable
models = Learning inaccurate models

• Solution: Use inference complexity as
learning bias

• Algorithm: Learn arithmetic circuits with
penalty on circuit size

• Result: Much faster and more accurate
inference than standard Bayes net learning

Algorithm EachMovie KDD Cup MSWeb
AC-Greedy 62ms 194ms 91ms
AC-Quick 162ms 198ms 115ms
Gibbs: 1k 7.22s 1.46s 1.89s
Gibbs: 10k 42.5s 11.3s 15.6s
Gibbs: 100k 452s 106s 154s
Gibbs: 1M 3912s 1124s 1556s

EachMovie AC-Greedy AC-Quick WinMine

Log-likelih. –55.7 –54.9 –53.7

Edges 155k 372k

Leaves 4070 6521 4830

Treewidth 35 54 281

Time >72h 22h 3m

KDD Cup AC-Greedy AC-Quick WinMine

Log-likelih. –2.16 –2.16 –2.16

Edges 382k 365k

Leaves 4574 4463 2267

Treewidth 38 38 53

Time 50h 3h 3m

MSWeb AC-Greedy AC-Quick WinMine

Log-likelih. –9.85 –9.85 –9.69

Edges 204k 256k

Leaves 1353 1870 1710

Treewidth 114 127 118

Time 8h 3h 2m

Compiling Bayes nets

• Exact inference: Jointree algorithm
• AC may be more efficient because it

can exploit local structure, including
determinism and context-specific
independencies

Context-specific
independence

• Can represent many distributions more
efficiently with local structure

• We will focus on Bayesian networks where
the conditional probability distributions
(CPDs) are represented by decision trees

• This allows compact distributions even for
nodes with many parents

• ACs can exploit local structure

SLOW

	Inference Complexity�As Learning Bias
	Slide Number 2
	The Goal
	Outline
	Solution 1: Exact Inference
	Solution 2: Approximate Inference
	Solution 3: Learn a tractable model�Related work: Thin junction trees
	Thin junction trees are thin
	Solution 3: Learn a tractable model�Our work: Arithmetic circuits�with penalty on circuit size
	Outline
	Bayesian networks
	… With decision-tree CPDs
	… Compiled to circuits
	Arithmetic circuits
	ACs for Inference
	BN Structure Learning
	Key Idea
	Basic algorithm
	Efficiency
	Algorithm
	Before split
	After split
	Slide Number 23
	How to split a circuit
	Optimizations
	Experiments
	Learning time
	Inference time
	Accuracy: EachMovie
	Accuracy: MSWeb
	Accuracy: KDD Cup
	Conclusion
	Slide Number 33
	Slide Number 34
	Compiling Bayes nets
	Context-specific independence
	Slide Number 37

