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What’s Rare Category Detection
Start de-novo
Very skewed classes

Majority classes
Minority classes

Labeling oracle
Goal

Discover minority classes 
with a few label requests
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Comparison with Outlier Detection
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Comparison with Active Learning
Rare category 
detection

Initial condition: NO
labeled examples

Goal: discover the 
minority classes with 
the least label requests

Active learning

Initial condition: labeled 
examples from each
class
Goal: improve the 
performance of the 
current classifier with 
the least label requests
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Applications
Network intrusion detection

Astronomy

Fraud detection

Spam image detection
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The Big Picture

Unbalanced
Unlabeled
Data Set

Rare
Category
Detection

Learning in
Unbalanced

Settings

Classifier

Raw
Data

Spatial

Relational

Temporal

Feature
Extraction
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Outline
Problem definition
Related work
Rare category detection for spatial data

Prior-dependent rare category detection
Prior-free rare category detection

Conclusion
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Related Work
Pelleg & Moore 2004

Mixture model
Different selection criteria

Fine & Mansour 2006
Generic consistency algorithm
Upper bounds and lower bounds

Papadimitriou et al 2003
LOCI algorithm for groups of outliers

Separable or
Near-separable
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Outline
Problem definition
Related work
Rare category detection for spatial data

Prior-dependent rare category detection
Prior-free rare category detection

Conclusion
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Notations
Unlabeled examples:                   ,
m Classes: 
m-1 rare classes:
One majority class:           ,

Goal: find at least ONE example from each
rare class by requesting a few labels

{ }1, , nS x x= K

{ }1, ,iy m∈ K
2 , , mp pK

2 c m≤ ≤

d
ix ℜ∈

1 cp p>>
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Assumptions
The distribution of the majority class is 
sufficiently smooth
Examples from the minority classes form 
compact clusters in the feature space
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Overview of the Algorithms
Nearest-neighbor-based methods

Methodology: local density differential 
sampling
Intuition: select examples according to the 
change in local density
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Two Classes: NNDB
1. Calculate class-specific radius    r′

2.          , ,ix S∀ ∈ ( ) { },i iNN x r x x x r′ ′= − ≤ ( ),i in NN x r′=

3.                                        ( )
( )

,
max

j i
i i jx NN x tr

s n n
′∈

= −

4. Query                              arg max
ix S ix s∈=

5.       Rare class?x∈

Increase t by 1

6. Output      

No

Yes
x
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NNDB: Calculate Class-Specific Radius
Number of examples from the minority 
class:

, calculate the distance     between      
and its      nearest neighbor
The class-specific radius:

2 2p K np→ =

ix S∀ ∈ ix
thK

K
ir

1minn K
i ir r=′ =
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NNDB: Calculate Nearest Neighbors
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NNDB: Calculate the Scores
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NNDB: Pick the Next Candidate
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Why NNDB Works
Theoretically

Theorem 1 [He & Carbonell 2007]: under 
certain conditions, with high probability, after 
a few iteration steps, NNDB queries at least 
one example whose probability of coming from 
the minority class is at least 1/3

Intuitively
The score    measures the 
change in local density

is
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Multiple Classes: ALICE
m-1 rare classes:
One majority class:           ,1 cp p

2 , , mp pK

2 c m≤ ≤

1. For each rare class c,                 

2. We have found examples from class c

2 c m≤ ≤

No

Yes

1c c← +

3. Run NNDB with prior      cp
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Why ALICE Works
Theoretically

Theorem 2 [He & Carbonell 2008]: under 
certain conditions, with high probability, in 
each outer loop of ALICE, after a few
iteration steps in NNDB, ALICE queries at 
least one example whose probability of 
coming from one minority class is at least 
1/3
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Implementation Issues
ALICE

Problem: repeatedly sampling from the same 
rare class

MALICE
Solution: relevance feedback

Class-specific radius
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Results on Synthetic Data Sets
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Summary of Real Data Sets
Abalone

4177 examples
7-dimensional features
20 classes
Largest class: 16.50%
Smallest class: 0.34%

Shuttle
4515 examples
9-dimensional features
7 classes
Largest class: 75.53%
Smallest class: 0.13%
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Results on Real Data Sets
Abalone Shuttle

MALICE
MALICE

Interleave Interleave
Random sampling Random sampling
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Imprecise priors
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Outline
Problem definition
Related work
Rare category detection for spatial data

Prior-dependent rare category detection
Prior-free rare category detection

Conclusion
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Overview of the Algorithm
Density-based method

Methodology: specially designed exponential 
families
Intuition: select examples according to the 
change in local density
Difference from NNDB (ALICE): NO prior 
information needed
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Specially Designed Exponential  Families  [Efron
 

& Tibshirani
 

1996]

Favorable compromise between parametric 
and nonparametric density estimation
Estimated density

( ) ( ) ( )( )xtxgxg T
100 exp βββ +=

Carrier density

Normalizing parameter

parameter vector1×p

vector of sufficient statistics1×p
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SEDER Algorithm
Carrier density: kernel density estimator

To decouple the estimation of different 
parameters

Decompose 
Relax the constraint such that

( ) ( ) ( )[ ]Tdxxxt 221 ,,K=

∑ =
=

d

j
j

1 00 ββ

( )
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Parameter Estimation
Theorem 3 [To appear]: the maximum likelihood 
estimate    and     of    and    satisfy the following 
conditions:

where

{ }dj ,,1K∈∀

( )
( )

( ) ( )( )
( )

( )
∑

∑

∑
∑ =

=

=

=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−

=
n

k
n

i j

j
i

j
kj

i

n

i
jj

ij

j
i

j
kj

i
n

k
j

k
xx

xExx

x
1

1 2

2

0

1

2
2

2

0

1

2

2
ˆexp

2
ˆexp

σ
β

σ
β

j
1β

j
i0βj

1̂β
j
i0β̂

( )( ) ( ) ( )
( ) ( )( )∫ +⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−=

jx

jjjj
ij

j
i

j

j
jjj

i dxxxxxxE 2
102

2
22 ˆˆexp

2
exp

2
1 ββ

σσπ



11/17/2008 Machine Learning Lunch 31

Parameter Estimation cont.
Let

:

where           ,
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Scoring Function
The estimated density

Scoring function: norm of the gradient

where
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Results on Synthetic Data Sets
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Summary of Real Data Sets

Data 
Set

n d m Largest 
Class

Smallest 
Class

Ecoli 336 7 6 42.56% 2.68%

Glass 214 9 6 35.51% 4.21%

Page Blocks 5473 10 5 89.77% 0.51%

Abalone 4177 7 20 16.50% 0.34%

Shuttle 4515 9 7 75.53% 0.13%

Moderately Skewed

Extremely Skewed
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Moderately Skewed Data Sets
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Extremely Skewed Data Sets
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Conclusion
Rare category detection

Open challenge
Lack of effective methods

Nearest-neighbor-based methods
Prior-dependent
Local density differential sampling

Density-based method
Prior-free
Specially designed exponential families
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