Rare Category Detection

Jingrui He Machine Learning Department Carnegie Mellon University

Joint work with Jaime Carbonell

What's Rare Category Detection

- Start de-novo
- Very skewed classes
 - Majority classes
 - Minority classes
- Labeling oracle

Goal

 Discover minority classes with *a few* label requests

Comparison with Outlier Detection

Rare classes

- A group of points
- Clustered
- Non-separable from the majority classes

Outliers

- A single point
- Scattered
- Separable

Comparison with Active Learning

Rare category detection

- Initial condition: NO labeled examples
- Goal: *discover* the minority classes with the least label requests

Active learning

- Initial condition: labeled examples from *each* class
- Goal: *improve* the performance of the current classifier with the least label requests

Fraud detection

"We're saving money this holiday season by heating our home with swiped credit cards."

Astronomy

Network intrusion detection

Spam image detection

11/17/2008

Machine Learning Lunch

Outline

- Problem definition
- Related work
- Rare category detection for spatial data
 - Prior-dependent rare category detection
 - Prior-free rare category detection
- Conclusion

Related Work

- Pelleg & Moore 2004
 - Mixture model
 - Different selection criteria
- Fine & Mansour 2006
 - Generic consistency algorithm
 - Upper bounds and lower bounds
- Papadimitriou et al 2003
 - LOCI algorithm for groups of outliers

Outline

- Problem definition
- Related work
- Rare category detection for spatial data
 - Prior-dependent rare category detection
 - Prior-free rare category detection
- Conclusion

Notations

- Unlabeled examples: $S = \{x_1, ..., x_n\}$, $x_i \in \Re^d$ ■ *m* Classes: $y_i \in \{1, ..., m\}$ ■ *m*-1 rare classes: $p^2, ..., p^m$ ■ One majority class: $p^1 >> p^c$, $2 \le c \le m$
- Goal: find at least ONE example from each rare class by requesting a few labels

Assumptions

- The distribution of the majority class is sufficiently smooth
- Examples from the minority classes form compact clusters in the feature space

Overview of the Algorithms

- Nearest-neighbor-based methods
 - Methodology: local density differential sampling
 - Intuition: select examples according to the change in local density

Two Classes: NNDB

NNDB: Calculate Class-Specific Radius

- Number of examples from the minority class: $p^2 \rightarrow K = np^2$
- □ $\forall x_i \in S$, calculate the distance r_i^K between x_i and its K^{th} nearest neighbor
- The class-specific radius:

$$r' = \min_{i=1}^n r_i^K$$

NNDB: Calculate Nearest Neighbors

$$NN(x_i, r') = \{x ||| x - x_i || \le r'\}$$

$$n_i = \left| NN\left(x_i, r'\right) \right|$$

NNDB: Calculate the Scores

$$s_i = \max_{x_j \in NN(x_i, tr')} \left(n_i - n_j \right)$$

Query $x = \arg \max_{x_i \in S} s_i$

NNDB: Pick the Next Candidate

Increase t by 1

$$s_i = \max_{x_j \in NN(x_i, (t+1)r')} (n_i - n_j)$$

Query $x = \arg \max_{x_i \in S} s_i$

Why NNDB Works

Theoretically

Theorem 1 [He & Carbonell 2007]: under certain conditions, with high probability, after a few iteration steps, NNDB queries at least one example whose probability of coming from the minority class is at least 1/3

Intuitively

The score s_i measures the change in local density

Multiple Classes: ALICE

□ *m*-1 rare classes: $p^2, ..., p^m$ □ One majority class: $p^1 \square p^c$, $2 \le c \le m$

Why ALICE Works

Theoretically

Theorem 2 [He & Carbonell 2008]: under certain conditions, with high probability, in each outer loop of ALICE, after a few iteration steps in NNDB, ALICE queries at least one example whose probability of coming from one minority class is at least 1/3

Implementation Issues

ALICE

Problem: repeatedly sampling from the same rare class

MALICE

Solution: relevance feedback

Results on Synthetic Data Sets

Summary of Real Data Sets

Abalone

- 4177 examples
- 7-dimensional features
- 20 classes
- Largest class: 16.50%
- Smallest class: 0.34%

Shuttle

- 4515 examples
- 9-dimensional features
- 7 classes
- Largest class: 75.53%
- Smallest class: 0.13%

Results on Real Data Sets

Imprecise priors

Abalone

Shuttle

Outline

- Problem definition
- Related work
- Rare category detection for spatial data
 - Prior-dependent rare category detection
 - Prior-free rare category detection
- Conclusion

Overview of the Algorithm

- Density-based method
 - Methodology: specially designed exponential families
 - Intuition: select examples according to the change in local density
 - Difference from NNDB (ALICE): NO prior information needed

Specially Designed Exponential Families [Efron & Tibshirani 1996]

Favorable compromise between parametric and nonparametric density estimation

Estimated density

SEDER Algorithm

- □ Carrier density: kernel density estimator □ $t(x) = [(x^1)^2, ..., (x^d)^2]^T$
- To decouple the estimation of different parameters
 - Decompose $\beta_0 = \sum_{j=1}^d \beta_0^j$
 - Relax the constraint such that

$$\int_{x^{j}} \frac{1}{\sqrt{2\pi\sigma^{j}}} \exp\left(-\frac{(x^{j} - x_{i}^{j})^{2}}{2(\sigma^{j})^{2}}\right) \exp\left(\beta_{0i}^{j} + \beta_{1}^{j}(x^{j})^{2}\right) dx^{j} = 1$$

Parameter Estimation

■ **Theorem 3** [To appear]: the maximum likelihood estimate $\hat{\beta}_1^j$ and $\hat{\beta}_{0i}^j$ of β_1^j and β_{0i}^j satisfy the following conditions: $\forall j \in \{1, ..., d\}$

$$\sum_{k=1}^{n} (x_k^j)^2 = \sum_{k=1}^{n} \frac{\sum_{i=1}^{n} \exp\left(\hat{\beta}_{0i}^j - \frac{(x_k^j - x_i^j)^2}{2(\sigma^j)^2}\right) E_i^j((x^j)^2)}{\sum_{i=1}^{n} \exp\left(\hat{\beta}_{0i}^j - \frac{(x_k^j - x_i^j)^2}{2(\sigma^j)^2}\right)}$$

where

$$E_{i}^{j}\left((x^{j})^{2}\right) = \int_{x^{j}} (x^{j})^{2} \frac{1}{\sqrt{2\pi\sigma^{j}}} \exp\left(-\frac{(x^{j}-x_{i}^{j})^{2}}{2(\sigma^{j})^{2}}\right) \exp\left(\hat{\beta}_{0i}^{j} + \hat{\beta}_{1}^{j}(x^{j})^{2}\right) dx^{j}$$

Machine Learning Lunch

Parameter Estimation cont.

Scoring Function

The estimated density

$$\widetilde{g}_{b}(x) = \frac{1}{n} \sum_{i=1}^{n} \prod_{j=1}^{d} \frac{1}{\sqrt{2\pi b^{j}} \sigma^{j}} \exp\left(-\frac{\left(x^{j} - b^{j} x_{i}^{j}\right)^{2}}{2\left(\sigma^{j}\right)^{2} b^{j}}\right)$$

Scoring function: norm of the gradient

$$s_{k} = \sqrt{\sum_{l=1}^{d} \frac{\left(\sum_{i=1}^{n} D_{i}(x_{k})(x_{k}^{l} - b^{l} x_{i}^{l})\right)^{2}}{\left((\sigma^{l})^{2} b^{l}\right)^{2}}}$$

where $D_{i}(x) = \frac{1}{n} \prod_{j=1}^{d} \frac{1}{\sqrt{2\pi b^{j}} \sigma^{j}} \exp\left(-\frac{(x^{j} - b^{j} x_{i}^{j})^{2}}{2(\sigma^{j})^{2} b^{j}}\right)$

Results on Synthetic Data Sets

Summary of Real Data Sets

Data Set	n	d	т	Largest Class	Smallest Class
Ecoli	336 Moo	7 loratol	6 V Skov	42.56%	2.68%
Glass	214	lergter	y Skei	35.51%	4.21%
Page Blocks	5473	10	5	89.77%	0.51%
Abalone	⁴¹ 2 7 Ext	remely	/ Skev	/ed ^{50%}	0.34%
Shuttle	4515	9	7	75.53%	0.13%

Moderately Skewed Data Sets

Extremely Skewed Data Sets

Conclusion

Rare category detection

- Open challenge
- Lack of effective methods
- Nearest-neighbor-based methods
 - Prior-dependent
 - Local density differential sampling
- Density-based method
 - Prior-free
 - Specially designed exponential families

