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What’s Rare Category Detection
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O Very skewed classes

Majority classes
Minority classes

O Labeling oracle
o Goal

Discover minority classes
with a few label requests



Comparison with Outlier Detection

O Rare classes O Outliers
= A group of points = A single point
= Clustered = Scattered
= Non-separable from the = Separable

maJOrlty classes
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Comparison with Active Learning

O Rare category O Active learning
detection
= Initial condition: NO = Initial condition: labeled
labeled examples examples from each
class

= Goal: improve the
performance of the
current classifier with
the least label requests

= Goal: discover the
minority classes with
the least label requests
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Unbalanced Rare Learning in
Unlabeled Category Unbalanced
Data Set Detection Settings
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Outline

O Problem definition
Related work

O Rare category detection for spatial data
= Prior-dependent rare category detection
= Prior-free rare category detection

O Conclusion

O
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Related Work

O Pelleg & Moore 2004 )

= Mixture model
m Different selection criteria

o Fine & Mansour 2006 > Separable or
= Generic consistency algorithm Near-separable
= Upper bounds and lower bounds

O Papadimitriou et al 2003
= LOCI algorithm for groups of outliers /
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Outline

O Problem definition
Related work

O Rare category detection for spatial data
= Prior-dependent rare category detection
= Prior-free rare category detection

O Conclusion

O
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Notations

0 Unlabeled examples: S ={x,...,x,} , X e R*
o m Classes: Y; €{1...,m}

o m-1 rare classes: p?,..., p"

0 One majority class: p* >> p%, 2<c<m

O Goal: find at least ONE example from each
rare class by requesting a few labels
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Assumptions

O The distribution of the majority class is
sufficiently smooth

0 Examples from the minority classes form
compact clusters Iin the feature space
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Overview of the Algorithms

O Nearest-neighbor-based methods

= Methodology: local density differential
sampling

= Intuition: select examples according to the
change in local density
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Two Classes: NNDB

Increase t by 1

No
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NNDB: Calculate Class-Specitic Radius

O Number of examples from the minority
class: p° - K =np’

O Vx €S, calculate the distance r between X
and its K" nearest neighbor

O The class-specific radius:

’ = N K
r'=min’, r
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NNDB: Calculate Nearest Neighbors
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NNDB: Calculate the Scores
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NNDB: Pick the Next Candidate
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Why NNDB Works

O Theoretically

= Theorem 1 [He & Carbonell 2007]: under
certain conditions, with high probability, after
a few iteration steps, NNDB queries at least
one example whose probability of coming from
the minority class is at least 1./3

O Intuitively

= The score S, measures the -
change in local density R
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Multiple Classes: ALICE

m

O m-1 rare classes: pz,..., P
0 One majority class: p ] p°,2<c<m

C«<C+1l
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Why ALICE Works

O Theoretically

= Theorem 2 [He & Carbonell 2008]: under
certain conditions, with high probability, In
each outer loop of ALICE, after a few
Iteration steps in NNDB, ALICE queries at
least one example whose probability of

coming from one minority class is at least
1/3
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Implementation Issues

O ALICE

= Problem: repeatedly sampling from the same
rare class

O MALICE
m Solution: relevance feedback
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Results on Synthetic Data Sets
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Summary of Real Data Sets

O Abalone O Shuttle
m 4177 examples = 4515 examples
= 7-dimensional features = 9-dimensional features
m 20 classes m 7 classes
= Largest class: 16.50% = Largest class: 75.53%
= Smallest class: 0.34% = Smallest class: 0.13%

11/17/2008 Machine Learning Lunch

23



Results on Real Data Sets
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Imprecise priors
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Outline

O Problem definition
Related work

O Rare category detection for spatial data
= Prior-dependent rare category detection
= Prior-free rare category detection

O Conclusion

O
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Overview of the Algorithm

o Density-based method

= Methodology: specially designed exponential
families

= Intuition: select examples according to the
change in local density

= Difference from NNDB (ALICE): NO prior
Information needed
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Specially Designed Exponential

Families [Efron & Tibshirani 1996]

O Favorable compromise between parametric
and nonparametric density estimation

O Estimated density
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SEDER Algorithm

O Carrier density: kernel density estimator

4

O t(x)= [(xl)z,...,(xd )2_

O To decouple the estimation of different
parameters

= Decompose S, =Z‘::1,Bo"
m Relax the constraint such that

jxj \/%O_j exp[— (XZJ(;_J)(I)Jz) jexp(ﬁoji + (Xj)z )ij =1
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Parameter Estimation

O Theorem 3 [To appear]: the maximum likelihood
estimate 3 and Sy of £'and f,, satisfy the following
conditions: Vje{l,...,d}

Y =30

where

E/] ((xj)z): .Li (x")2 \/%(71_ exp{— (x2‘ (;j(;;)zjexp(,@(fi + ) (x")2 )dxj
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Parameter Estimation cont.
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Scoring Function

o The estimated density
6.00=2 30 [T exg| LR
S o) Z(Gj)zbj
O Scoring function: norm of the gradient
. sz (320,00t -b'x)f

]
where

S Y p[— (ij(;?)ij)zj
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Results on Synthetic Data Sets
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Summary of Real Data Sets

Data N d m Largest Smallest
Set Class Class
Ecoli 336 7 6 42.56% 2.68%
Moaerately Skewed

Glass 214 6 | 3551% | 4.21%
Page Blocks 5473 10 5 89.77% 0.51%
Abalone 4147 502 0.34%
‘Extremely SKewed """ °

Shuttle 4515 9 7 75.53% 0.13%
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Moderately Skewed Data Sets

Percentage of Classes Discovered
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Extremely Skewed Data Sets
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Conclusion

O Rare category detection
= Open challenge
= Lack of effective methods

0 Nearest-neighbor-based methods
= Prior-dependent
= Local density differential sampling

o Density-based method
= Prior-free
= Specially designed exponential families
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