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Outline

1/15/2009Machine Learning Lunch @ CMU2
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–

 
Structured Prediction

–

 
Max-margin Markov Networks

Max-Entropy Discrimination Markov Networks (MaxEnDNet)
–

 
Basic Theorems

–

 
Partially Observed MaxEnDNet

–

 
Experimental Results

Summary



Classification
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• Inputs: 
– a set of training samples                                 , where 

and 

• Outputs:
– a predictive function         :   

• Examples (                                  ):

–
 

Support Vector Machine (SVM)
• Max-margin learning

–
 

Logistic Regression
• Max-likelihood estimation



Structured Prediction
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• Inputs:
–

 
a set of training samples:                                   , where

–

 
Examples:
–

 

Part-of-speech (POS) Tagging: 

–

 

Image segmentation

• Outputs:
– a predictive function           :

“Do you want fries with that?”

 

->            <verb pron verb noun prep pron>



Structured Prediction Models
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Conditional Random Fields 
(CRFs)  (Lafferty et al., 2001)
–

 

Based on Logistic Regression

–

 

Max-likelihood estimation (point-estimate)

• Max-margin Markov Networks 
(M3Ns) (Taskar et al., 2003)
–

 

Based on SVM

–

 

Max-margin learning ( point-estimate) 

• Markov properties are encoded in the 
feature functions 



Between
 

MLE and max-margin learning
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Likelihood-based estimation
–

 

Probabilistic (joint/conditional 
likelihood model)

–

 

Easy to perform Bayesian learning, and 
consider prior knowledge, missing 
data

• Max-margin learning
–

 

Non-probabilistic (concentrate on input-

 output mapping)

–

 

Not obvious how to perform Bayesian learning 
or consider prior, and missing data

–

 

Sound theoretical guarantee with limited 
samples

• Maximum Entropy Discrimination (MED) (Jaakkola, et al., 1999)  
– A Bayesian learning approach

– The optimization problem (binary classification)



MaxEnt Discrimination Markov Networks (MaxEnDNet):

–

 
Generalized

 
maximum entropy or regularized KL-divergence

–

 
Subspace of distributions defined with expected margin constraints

Bayesian-style Prediction

MaxEnt Discrimination Markov networks
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p



Solution to MaxEnDNet
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Theorem 1 (Solution to MaxEnDNet):
–

 
Posterior Distribution:

–

 
Dual Optimization Problem:

Convex conjugate (closed proper convex          )
–

 
Def:

–

 
Ex:



Reduction to M3Ns
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Theorem 2 (Reduction of MaxEnDNet to M3Ns):
–

 
Assume 

Posterior distribution:

Dual optimization:

Predictive rule:

Thus, MaxEnDNet subsumes M3Ns and admits all the merits of 
max-margin learning

Furthermore, MaxEnDNet has at least three advantages …



Three Advantages
PAC-Bayesian prediction error guarantee

Introduce regularization effects, such as sparsity bias
Laplace prior => Posterior shrinkage effects (Laplace M^3N, ICML’08)

An elegant approach to incorporate latent variables and structures
Partially observed MaxEnDNet

1/15/2009Machine Learning Lunch @ CMU10



Motivating Example
Web data extraction

Goal: Name, Image, Price, Description, etc.
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Given Data Record

Hierarchical model
Advantages:
o Computational efficiency
o Long-range dependency
o Joint extraction

{image} {name, price}

{name} {price} {name} {price}

{image} {name, price}

{desc}

{Head} {Tail}{Info Block}

{Repeat block}{Note} {Note}



Learn hierarchical model with latent 
variables
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Can we learn a hierarchical model from partially labeled data?
Yes! 

Partially observed CRFs for object recognition (NIPS’04)

Dynamic Hierarchical MRFs for web data extraction (ICML’07)

How about max-margin learning?
Yes!

Easy with MaxEnDNet



augmented with hidden variables

Def of PoMEN:

Prediction:

Partially observed MaxEnDNet
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Factorization assumption:

Alternating minimization:
Step 1: keep       fixed, optimize over  

Step 2: keep       fixed, optimize over 

Alternating Minimization Alg.
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o Normal prior
• M^3N problem (QP)

o Laplace prior
• Laplace M^3N problem (VB)

Equivalently reduced to a NLP with 
a polynomial number of constraints



Experimental Results
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Web data extraction:
Name, Image, Price, Description
Methods:

Hierarchical CRFs, Hierarchical M^3N
PoMEN, Partially observed HCRFs

Pages from 37 templates
o Training: 185 (5/per template) pages, or 

1585 data records
o Testing: 370 (10/per template) pages, or 

3391 data records

Record-level Evaluation
o Leaf nodes are labeled
Page-level Evaluation
o Supervision Level 1:

Leaf nodes and data record nodes are 
labeled

o Supervision Level 2:
Level 1 + the nodes above data record 
nodes



Record-Level Evaluations
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Overall performance:
Avg F1: 
o avg F1 over all attributes

Block instance accuracy:
o % of records whose Name, 

Image, and Price

 
are correct

Attribute performance:



Page-Level Evaluations
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Supervision Level 1:
Leaf nodes and data record 
nodes are labeled

Supervision Level 2:
Level 1 + the nodes above 
data record nodes



Summary
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MaxEnt Discrimination Markov Networks (MaxEnDNet)
o PAC-Bayesian performance guarantee
o Sparsity regularization effects
o Incorporating latent variables and structures

Experimental results show the advantages of max-margin 
learning over likelihood methods with latent variables



Margin-based Learning Paradigms
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