
Distinguishing Causes from Effects using
Nonlinear Acyclic Causal Models

Kun Zhang1 and Aapo Hyvärinen1,2

1 Dept. of Computer Science & HIIT
2 Dept. of Mathematics and Statistics

University of Helsinki



2

Outline
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¡Relation to post-nonlinear independent component analysis (ICA)
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l Experiments
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Methods for causal discovery

l Two popular kinds of methods
¡Constraint-based: using independence tests to find the patterns of

relationships. Example: PC/IC

¡ Score-based: using a score (such as BIC) to compare different causal
models

lModel-based: a special case of score-based methods
¡Assumes a generative model for the data generating process

¡Can discover in what form each variable is influenced by others

¡Examples
l Granger causality: effects follow causes in a linear form

l LiNGAM: linear, non-Gaussian and acyclic causal model (Shimizu, et al., 2006)
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Three effects usually encountered in a causal
model

Cause Effectf1 f2+

Noise

Nonlinear effect
of the cause

Noise effect

Sensor or measurement
distortion

l Without prior knowledge, the assumed model is expected to be
¡ general enough: adapted to approximate the true generating process
¡ identifiable: asymmetry in causes and effects

l Represented by post-nonlinear causal model with inner additive
noise
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Post-nonlinear (PNL) causal model with inner
additive noise
l The directed acyclic graph (DAG) is used to represent the data

generating process:

xi = fi,2 ( fi,1 (pai) + ei)

l Here consider the two-variable case
¡ x1 x2: x2 = f2,2 ( f2,1 (x1) + e2)

l Identifiability: related to the separability of PNL mixing independent
component analysis (ICA) model

fi,2: assumed to be
continuous and invertible

pai: parents (causes) of xi

ei: noise/disturbance:
independent from pai

fi,1: not necessarily
invertible
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Three cases of ICA: linear, general nonlinear,
and PNL
l Linear ICA: separable under weak assumptions

l Nonlinear ICA: A and W become invertible nonlinear mappings
l not separable: yi may be totally different from si

x1

xm

observed signals

ICA system
y = W·x

output: as independent
as possible

W

… … y1

yn

de-mixing

estimate

A

… …s1

sn

unknown mixing system
x = A·s

independent sources

mixing matrix

…
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PNL mixing ICA: a nice trade-off
l Mixing system: linear transformation followed by invertible

component-wise nonlinear transformation

l Separability (Taleb and Jutten, 1999): under the following conditions,
yi are independent iff hi=gi o fi is linear and yi are a estimate of si
l A has at least two nonzero entries per row or per column;
l fi are differentiable invertible function;
l each si accepts a density function that vanishes at one point at least.

x1

xn

observed
mixtures

Separation  system (g,W)

outputs

W
… … y1

yn
A

… …s1

sn

Unknown mixing system (A,f)

independent
sources

mixing
matrix

f1

fn

g1

gn

invertible
PNL
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Identifiability of the proposed causal model

l If f2,1 is invertible, it is a special case of PNL mixing ICA model
with A=(1, 0; 1 1): x2 = f2,2 ( f2,1 (x1) + e2)

l Identifiability: the causal relation between x1 and x2 can be
uniquely identified if
¡ x1 and x2 are generated according to this causal model with invertible f2,1;

¡ the densities of f2,1 (x1) and e2 vanish at one point at least.

l If f2,1 is not invertible, it is not PNL mixing ICA model. But it is
empirically identifiable under very general conditions.
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Identification Method
l Basic idea: which one of x1 x2 and x1 x2 can make the cause and

disturbance independent ?

l Two-step procedure for each possible causal relation
¡Step 1: constrained nonlinear ICA to estimate the corresponding

disturbance

¡Step 2: uses independence tests to verify if the assumed cause and the
estimated disturbance are independent

( y2 produces an estimate of e2)

Suppose x1 x2, i.e., x2 = f2,2 ( f2,1 (x1) + e2). y2
provides an estimate of e2 , learned by
minimizing the mutual information (which is
equivalent to negative likelihood):
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Special cases

xi = fi,2 ( fi,1 (pai) + ei)

l If fi,1 and fi,2 are both linear
¡ at most one of ei is Gaussian: LiNGAM (linear, non-Gaussian,

acyclic causal model, Shimizu et al., 2006)

¡ all of ei are Gaussian: linear Gaussian model

l If fi,2 are linear: nonlinear causal discovery with additive noise
models (Hoyer et al., 2009)
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Experiments
l For the CausalEffectPairs task in the Pot-luck challenge
¡Eight data sets

¡Each contains the realizations of two variables

¡Goal: to identify which variable is the cause and which one the effect

l Settings
¡g1 and g2 in constrained nonlinear ICA: modeled by multilayer

perceptrons (MLP’s) with one hidden layer

¡Different #hidden units (4~10) were tried; results remained the same

¡Kernel-based independence tests (Gretton et al., 2008) were adopted
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Results

Significantx1 x28
Significantx2 x17
Significantx1 x26
Significantx2 x15
not significantx2 x14
Significantx1 x23
Significantx1 x22
Significantx1 x21
RemarkResult (direction of causality)Data set
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Data Set 1
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Data Set 2
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Data Set 3
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hypothesis x1 x2

(b) y1 vs y2 under
hypothesis x2 x1
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Data Set 4

(a) y1 vs y2 under
hypothesis x1 x2

(b) y1 vs y2 under
hypothesis x2 x1
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Data Set 5

(a) y1 vs y2 under
hypothesis x1 x2

(b) y1 vs y2 under
hypothesis x2 x1
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Data Set 6

(a) y1 vs y2 under
hypothesis x1 x2

(b) y1 vs y2 under
hypothesis x2 x1
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Data Set 7

(a) y1 vs y2 under
hypothesis x1 x2

(b) y1 vs y2 under
hypothesis x2 x1
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Data Set 8

(a) y1 vs y2 under
hypothesis x1 x2

(b) y1 vs y2 under
hypothesis x2 x1
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Conclusion

l Post-nonlinear acyclic causal model with inner additive
noise
¡ Very general: nonlinear effect of cause, noise effect & sensor nonlinear

distortion

¡ Still identifiable

l Experimental results on the CauseEffectPairs problem show
its applicability for some practical problems

l Future work
¡ Identifiability of this model in the general case of more than two

variables

¡Efficient identification methods
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