Distinguishing Causes from Effects using N onlinear Acyclic Causal Models

Kun Zhang ${ }^{1}$ and A apo Hyvärinen ${ }^{1,2}$
${ }^{1}$ D ept. of Computer Science \& HIIT
${ }^{2}$ D ept. of Mathematics and Statistics
University of Helsinki

Outline

Introduction

Post-nonlinear causal model with inner additive noise
${ }^{\circ}$ Relation to post-nonlinear independent component analysis (ICA)
${ }^{\circ}$ Identification method
Special cases
Experiments

Methods for causal discovery

Two popular kinds of methods

- Constraint-based: using independence tests to find the patterns of relationships. Example: PC/ IC
- Score-based: using a score (such as BIC) to compare different causal models

Model-based: a special case of score-based methods

- Assumes a generative model for the data generating process
- Can discover in what form each variable is influenced by others
- Examples

G ranger causality: effects follow causes in a linear form
LiNGAM: linear, non-G aussian and acyclic causal model (Shimizu, et al., 2006)

Three effects usually encountered in a causal model

Without prior knowledge, the assumed model is expected to be
${ }^{\circ}$ general enough: adapted to approximate the true generating process

- identifiable: asymmetry in causes and effects

Represented by post-nonlinear causal model with inner additive noise

Post-nonlinear (PNL) causal model with inner additive noise

The directed acyclic graph (DAG) is used to represent the data generating process:

Here consider the two-variable case

$$
x_{1} \rightarrow x_{2}: \quad x_{2}=f_{2,2}\left(f_{2, l}\left(x_{1}\right)+e_{2}\right)
$$

Identifiability: related to the separability of PNL mixing independent component analysis (ICA) model

Three cases of ICA: linear, general nonlinear, and PNL

Linear ICA: separable under weak assumptions

unknown mixing system

$$
\mathbf{x}=\mathbf{A} \cdot \mathbf{s}
$$

ICA system

$$
\mathbf{y}=\mathbf{W} \cdot \mathbf{x}
$$

Nonlinear ICA: A and \mathbf{W} become invertible nonlinear mappings
not separable: y_{i} may be totally different from s_{i}

PNL mixing ICA: a nice trade-off

Mixing system: linear transformation followed by invertible component-wise nonlinear transformation

Unknown mixing system (A, f)
Separation system (g,W)
Separability (Taleb and Jutten, 1999): under the following conditions,
y_{i} are independent iff $h_{i}=g_{i} \mathrm{o} f_{i}$ is linear and y_{i} are a estimate of s_{i}
A has at least two nonzero entries per row or per column;
f_{i} are differentiable invertible function; each s_{i} accepts a density function that vanishes at one point at least.

Identifiability of the proposed causal model

If $f_{2,1}$ is invertible, it is a special case of PNL mixing ICA model with $\mathbf{A}=(1,0 ; 11): \quad x_{2}=f_{2,2}\left(f_{2,1}\left(x_{1}\right)+e_{2}\right)$

$$
\stackrel{s_{1} \triangleq f_{2,1}\left(x_{1}\right), s_{2} \triangleq e_{2}}{ }\left\{\begin{array}{c}
x_{1}=f_{2,1}^{-1}\left(s_{1}\right) \\
x_{2}=f_{2,2}\left(s_{1}+s_{2}\right)
\end{array}\right.
$$

Identifiability: the causal relation between x_{1} and x_{2} can be uniquely identified if
${ }^{\circ} x_{1}$ and x_{2} are generated according to this causal model with invertible $f_{2,1}$;
${ }^{\circ}$ the densities of $f_{2,1}\left(x_{1}\right)$ and e_{2} vanish at one point at least.
If $f_{2,1}$ is not invertible, it is not PNL mixing ICA model. But it is empirically identifiable under very general conditions.

Identification Method

Basic idea: which one of $x_{I} \rightarrow x_{2}$ and $x_{I} \rightarrow x_{2}$ can make the cause and disturbance independent?

Two-step procedure for each possible causal relation
${ }^{\circ}$ Step 1: constrained nonlinear ICA to estimate the corresponding disturbance
Suppose $x_{1} \rightarrow x_{2}$, i.e., $x_{2}=f_{2,2}\left(f_{2,1}\left(x_{1}\right)+e_{2}\right) . y_{2}$ provides an estimate of e_{2}, learned by minimizing the mutual information (which is equivalent to negative likelihood):

(y_{2} produces an estimate of e_{2})

$$
\begin{aligned}
I\left(y_{1}, y_{2}\right) & =H\left(y_{1}\right)+H\left(y_{2}\right)+E\{\log |\mathbf{J}|\}-H(\mathbf{x}) \\
& =-E \log p_{y 1}\left(y_{1}\right)-E \log p_{y 2}\left(y_{2}\right)+E\{\log |\mathbf{J}|\}-H(\mathbf{x})
\end{aligned}
$$

- Step 2: uses independence tests to verify if the assumed cause and the estimated disturbance are independent

Special cases

$$
x_{i}=f_{i, 2}\left(f_{i, 1}\left(p a_{i}\right)+e_{i}\right)
$$

If $f_{i, 1}$ and $f_{i, 2}$ are both linear
${ }^{\circ}$ at most one of e_{i} is Gaussian: LiNGAM (linear, non-G aussian, acyclic causal model, Shimizu et al., 2006)
${ }^{\circ}$ all of e_{i} are G aussian: linear G aussian model
If $f_{i, 2}$ are linear: nonlinear causal discovery with additive noise models (Hoyer et al., 2009)

Experiments

For the CausalEffectPairs task in the Pot-luck challenge

- Eight data sets
- Each contains the realizations of two variables
- G oal: to identify which variable is the cause and which one the effect

Settings

${ }^{\circ} g_{1}$ and g_{2} in constrained nonlinear ICA: modeled by multilayer perceptrons (MLP's) with one hidden layer
${ }^{\circ}$ Different \#hidden units (4~10) were tried; results remained the same

- K ernel-based independence tests (G retton et al., 2008) were adopted

Results

D ata set	Result (direction of causality)	Remark
1	$x_{1} \rightarrow x_{2}$	Significant
2	$x_{1} \rightarrow x_{2}$	Significant
3	$x_{1} \rightarrow x_{2}$	Significant
4	$x_{2} \rightarrow x_{1}$	not significant
5	$x_{2} \rightarrow x_{1}$	Significant
6	$x_{1} \rightarrow x_{2}$	Significant
7	$x_{2} \rightarrow x_{1}$	Significant
8	$x_{1} \rightarrow x_{2}$	Significant

Independence test results on y_{1} and y_{2} with different assumed causal relations

Data Set	$x_{1} \rightarrow x_{2}$ assumed		$x_{2} \rightarrow x_{1}$ assumed	
	Threshold $(\alpha=0.01)$	Statistic	Threshold $(\alpha=0.01)$	Statistic
13	13			
$\# 1$	2.3×10^{-3}	1.7×10^{-3}	2.2×10^{-3}	6.5×10^{-3}

D ata Set 6

(a) y_{1} vs y_{2} under hypothesis $x_{1} \rightarrow x_{2}$
(b) y_{1} vs y_{2} under
hypothesis $x_{2} \rightarrow x_{1}$

Conclusion

Post-nonlinear acyclic causal model with inner additive noise

- Very general: nonlinear effect of cause, noise effect \& sensor nonlinear distortion
- Still identifiable

Experimental results on the CauseEffectPairs problem show its applicability for some practical problems
Future work

- Identifiability of this model in the general case of more than two variables
- Efficient identification methods

References

A. Taleb and C. Jutten. Source separation in post-nonlinear mixtures. IEEE Trans anSignal Processing 47(10): 2802-2820, 1999

- S. Shimizu, P.O. Hoyer, A. Hyvärinen, and A.J. Kerminen. A linear nonG aussian acyclic model for causal discovery, Joumal of MadineLemming Research 7:2003--2030, 2006
- P.O. Hoyer, D. Janzing, J. Mooij, J. Peters, and B. Schölkopf. Nonlinear causal discovery with additive noise models. In NIPS 21. To appear, 2009
- A. G retton, K. Fukumizu, C.H. Teo, L. Song, B. Schölkopf, and A.J. Smola. A kernel statistical test of independence. In NIPS 20, pages 585-592, 2008

