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Unobserved data generating process

i.i.d. sample

Objective:

Learn structure, e.g. causal Bayesian
network

Assessment:

Compare to “ground truth”, i.e.
simulations, experimental studies,
expert knowledge

Focus:

Learn network models that accurately
depict the data generating mechanism
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Prediction

BB

Target

P1 P2 P3 P4 P5
The Standard Problem:

“Target” variable associated
with “predictor” variables

i.i.d sample (training data)

Objective:

Predict target from values of
predictor variables

Assessment:
Compare predictions to known target values, i.e. testing data, cross
validation

Focus:
Train classifier/regression model that minimizes loss function, e.g.
makes accurate predictions
Model need not resemble the true data generating mechanism,i.e. Naive
Bayes
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Previous focus: predicting the effects of possible interventions:

Specify the distribution for a manipulated population

Counterfactuals

Assume intervention has not been performed, e.g. no data from
manipulated population

Causation and Prediction Challenge:

Training data from unmanipulated population

(Structural) intervention is performed

System stabilizes

Draw i.i.d sample for predictors from manipulated population

Predict target using predictor values from stabilized manipulated
distribution
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Causation and Prediction Challenge

Results:

In some instances, noncausal methods outperformed causal methods

Questions:

Is causality useful for standard prediction tasks?

Is it useful in practice?

Is this a realistic scenario?

Possible Explanations:

Sampling error, overfitting

Parametric assumptions do not hold, i.e. linearity, Gaussianity

Prediction for target is invariant under the manipulation.
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Invariance of prediction under manipulations

Simple example:

X

Y

Bayes optimal prediction forY is P(Y|X)

ManipulatingX does not change distribution ofP(Y|X), still Bayes
optimal

Prediction (once system stabilizes) is invariant under manipulation
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Invariance of prediction under manipulations

Simple example:

X

Y

Bayes optimal prediction forY is P(Y|X)

ManipulatingY does change distribution ofP(Y|X), Y depends on
manipulation

Incorrect predictions in stabilized manipulated population
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In a causal Bayesian network
B = 〈G, P〉 over variablesV, the
Markov Blanket forX ∈ V is the
minimal set of variables
MBG

X ⊆ V/{X} such that
X ⊥⊥ V/MBG

X | MBG
X .

Theorem (Pearl, 1988)

The Markov blanket for X consists
of the parents, children and
coparents of X in G.
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In a causal Bayesian network
B = 〈G, P〉 over variables V, let
T ∈ V be a target, X ⊆ V a set of
predictor variables, and Y ⊆ V the
set of manipulated variables. If
X ⊇ MBG

T and ∀Y ∈ Y, Y 6= T and
Y /∈ Children(T), then prediction
of T using X is invariant under the
manipulation.
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P(T | X) = P(T | MBG
T )
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∏

X∈T∪Children(T)∪Parents(T)∪Coparents(T) P(X | Parents(T))
∑

T

∏

X∈T∪Children(T)∪Parents(T)∪Coparents(T) P(X | Parents(T))

in the Markov blanket subgraph

. . .

=

∏

X∈T∪Children(T) P(X | Parents(T))
∑

T
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Theorem (Causal correction)

In a causal Bayesian network
B = 〈G, P〉 over variables V, let T
be a target and Y ⊆ V the set of
manipulated variables.

P
(

T | MBG(Policy(Y))
T

)

, is invariant

under the manipulation of Y if
∄Y ∈ Y, such that
Y ∈ Children(T) and Y is an
ancestor of some
C ∈ Children(T) ∩ V/Y.

When causality matters for prediction Tillman and Spirtes NIPS 2008 Workshop on Causality 16 / 29



Causation and Prediction Invariance of prediction functions Experimental Results Conclusions

Correcting for manipulations

CiliaDam

LungCapac

BreathDis

Genotype

HeartDis

SmokerPollution

Income Parent

Policy(BreathDis)

Policy(BreathDis) = 1

Theorem (Causal correction)

In a causal Bayesian network
B = 〈G, P〉 over variables V, let T
be a target and Y ⊆ V the set of
manipulated variables.

P
(

T | MBG(Policy(Y))
T

)

, is invariant

under the manipulation of Y if
∄Y ∈ Y, such that
Y ∈ Children(T) and Y is an
ancestor of some
C ∈ Children(T) ∩ V/Y.

When causality matters for prediction Tillman and Spirtes NIPS 2008 Workshop on Causality 17 / 29



Causation and Prediction Invariance of prediction functions Experimental Results Conclusions

Correcting for manipulations

CiliaDam

LungCapac

BreathDis

Genotype

HeartDis

Smoker Pollution

Income Parent

Policy(LungCapac)

Policy(BreathDis) = 0

Theorem (Causal correction)

In a causal Bayesian network
B = 〈G, P〉 over variables V, let T
be a target and Y ⊆ V the set of
manipulated variables.

P
(

T | MBG(Policy(Y))
T

)

, is invariant

under the manipulation of Y if
∄Y ∈ Y, such that
Y ∈ Children(T) and Y is an
ancestor of some
C ∈ Children(T) ∩ V/Y.

When causality matters for prediction Tillman and Spirtes NIPS 2008 Workshop on Causality 18 / 29



Causation and Prediction Invariance of prediction functions Experimental Results Conclusions

Correcting for manipulations

CiliaDam

LungCapac

BreathDis

HeartDis

Smoker Pollution

Genotype

Income Parent

Policy(LungCapac)

Policy(BreathDis) = 1
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Experiments

Hypotheses:

Noncausal methods will be equivalent or better when no children are
manipulated

Causal methods will do increasingly better than noncausal methods as
more children are manipulated
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Experiments

Method:

Train causal and noncausal prediction methods on unmanipulated
population (linear Gaussians)

Manipulate 0, 5, 10 random nonchildren ofT (including Markov blanket)

Manipulate 0, . . . , 9 children ofT in addition

PredictT from manipulated distribution
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Noncausal Methods:
LR-ALL linear regression using all predictors
LR-MB linear regression using only the Markov blanket
LASSO “least absolute shrinkage and selection operator”
SVR-RBF support vector regression using radial kernel
RVR-RBF relevance vector regression using radial kernel
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Prediction methods

Noncausal Methods:
LR-ALL linear regression using all predictors
LR-MB linear regression using only the Markov blanket
LASSO “least absolute shrinkage and selection operator”
SVR-RBF support vector regression using radial kernel
RVR-RBF relevance vector regression using radial kernel

Causal Methods:
LR-MB/C linear regression with Markov blanket correcting for

manipulated children
LR-MB/C* linear regression with Markov blanket correcting for

manipulated children and active paths to unmanipulated
children
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Nonlinear data

Repeated previous simulations adding nonlinear dependencies

Results so far inconclusive

In general, nonparametric methods do best, though poor performance in
all cases
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Conclusions

Is causality relevant for prediction?

Unless noncausal method is invariant under the manipulation

But causality is needed to know noncausal methods are invariant!

In practice?

Tradeoff between errors related to causality and errors related to
parametric assumptions, overfitting, etc.

Noncausal prediction may be frequently invariant (oralmost invariant)

Advantages of nonparametric methods and methods which dealwith
overfitting well may cancel out errors related to causality

Many other variables involved, analysis incomplete
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