When causality matters for prediction: Investigating the practical tradeoffs

Robert E. Tillman

Peter Spirtes

Carnegie Mellon

Department of Philosophy College of Humanities and Social Sciences Machine Learning Department School of Computer Science

NIPS 2008 Workshop on Causality: Objectives and Assessment

Causation	and	Prediction
0000		

Experimental Result

Conclusions O

Causal Discovery

The Usual Setup:

- Unobserved data generating process
- i.i.d. sample

Invariance of prediction functions

Experimental Result

Conclusions O

Causal Discovery

The Usual Setup:

- Unobserved data generating process
- i.i.d. sample

Objective:

• Learn structure, e.g. causal Bayesian network

Invariance of prediction functions

Experimental Results

Conclusions O

Causal Discovery

The Usual Setup:

- Unobserved data generating process
- i.i.d. sample

Objective:

• Learn structure, e.g. causal Bayesian network

Assessment:

• Compare to "ground truth", i.e. simulations, experimental studies, expert knowledge

Invariance of prediction functions

Experimental Results

Causal Discovery

The Usual Setup:

- Unobserved data generating process
- i.i.d. sample

Objective:

• Learn structure, e.g. causal Bayesian network

Assessment:

• Compare to "ground truth", i.e. simulations, experimental studies, expert knowledge

Focus:

• Learn network models that accurately depict the data generating mechanism

Causation	and	Prediction
0000		

Experimental Result

Prediction

The Standard Problem:

- "Target" variable associated with "predictor" variables
- i.i.d sample (training data)

Causation	and	Prediction
0000		

Experimental Result

Prediction

The Standard Problem:

- "Target" variable associated with "predictor" variables
- i.i.d sample (training data)

Objective:

• Predict target from values of predictor variables

Causation	and	Prediction
0000		

Experimental Result

Prediction

The Standard Problem:

- "Target" variable associated with "predictor" variables
- i.i.d sample (training data)

Objective:

• Predict target from values of predictor variables

Assessment:

• Compare predictions to known target values, i.e. testing data, cross validation

Causation	and	Prediction	
0000			

Experimental Result

Conclusions O

Prediction

The Standard Problem:

- "Target" variable associated with "predictor" variables
- i.i.d sample (training data)

Objective:

• Predict target from values of predictor variables

Assessment:

• Compare predictions to known target values, i.e. testing data, cross validation

Focus:

- Train classifier/regression model that minimizes loss function, e.g. makes accurate predictions
- Model need not resemble the true data generating mechanism, i.e. Naive Bayes

Causation and Prediction	Invariance of prediction functions	Experimental Results	Conclusions O
Causal Discovery and	Prediction		

- Specify the distribution for a manipulated population
- Counterfactuals

Causation and Prediction	Invariance of prediction functions	Experimental Results	Conclusions
0000			
Causal Discovery an	d Prediction		

- Specify the distribution for a manipulated population
- Counterfactuals
- Assume intervention has not been performed, e.g. no data from manipulated population

Causation and Prediction	Invariance of prediction functions	Experimental Results	Conclusions
0000			
Causal Discovery	and Prediction		

- Specify the distribution for a manipulated population
- Counterfactuals
- Assume intervention has not been performed, e.g. no data from manipulated population
- Causation and Prediction Challenge:
 - Training data from unmanipulated population

Causation and Prediction	Invariance of prediction functions	Experimental Results	Conclusions
0000			
Causal Discovery a	nd Prediction		

- Specify the distribution for a manipulated population
- Counterfactuals
- Assume intervention has not been performed, e.g. no data from manipulated population
- Causation and Prediction Challenge:
 - Training data from unmanipulated population
 - (Structural) intervention is performed
 - System stabilizes

Causation and Prediction	Invariance of prediction functions	Experimental Results	Conclusions
0000			
Causal Discovery and	Prediction		

- Specify the distribution for a manipulated population
- Counterfactuals
- Assume intervention has not been performed, e.g. no data from manipulated population
- Causation and Prediction Challenge:
 - Training data from unmanipulated population
 - (Structural) intervention is performed
 - System stabilizes
 - Draw i.i.d sample for predictors from manipulated population
 - Predict target using predictor values from stabilized manipulated distribution

Causation and Prediction	Invariance of prediction functions	Experimental Results	Conclusions O
Causation and Predicti	on Challenge		

• In some instances, noncausal methods outperformed causal methods

Causation and Prediction	Invariance of prediction functions	Experimental Results	Conclusions
0000			
Causation and Predicti	on Challenge		

• In some instances, noncausal methods outperformed causal methods Questions:

• Is causality useful for standard prediction tasks?

Causation and Prediction	Invariance of prediction functions	Experimental Results	Conclusions
0000			
Causation and Pred	iction Challenge		

- In some instances, noncausal methods outperformed causal methods Questions:
 - Is causality useful for standard prediction tasks?
 - Is it useful in practice?

Causation and Prediction	Invariance of prediction functions	Experimental Results	Conclusions
0000			
Causation and Pred	liction Challenge		

- In some instances, noncausal methods outperformed causal methods Questions:
 - Is causality useful for standard prediction tasks?
 - Is it useful in practice?
 - Is this a realistic scenario?

Causation and Prediction	Invariance of prediction functions	Experimental Results	Conclusions
0000			
Causation and Pred	iction Challenge		

• In some instances, noncausal methods outperformed causal methods Questions:

- Is causality useful for standard prediction tasks?
- Is it useful in practice?
- Is this a realistic scenario?

Possible Explanations:

- Sampling error, overfitting
- Parametric assumptions do not hold, i.e. linearity, Gaussianity
- Prediction for target is invariant under the manipulation.

Invariance of prediction functions

Experimental Results

Conclusions O

Invariance of prediction under manipulations

Simple example:

Bayes optimal prediction for *Y* is P(Y|X)

Invariance of prediction functions

Experimental Results

Conclusions O

Invariance of prediction under manipulations

Simple example:

Bayes optimal prediction for *Y* is P(Y|X)

- Manipulating X does not change distribution of P(Y|X), still Bayes optimal
- Prediction (once system stabilizes) is invariant under manipulation

Invariance of prediction functions

Experimental Results

Conclusions O

Invariance of prediction under manipulations

Simple example:

Bayes optimal prediction for *Y* is P(Y|X)

- Manipulating Y does change distribution of P(Y|X), Y depends on manipulation
- Incorrect predictions in stabilized manipulated population

Invariance of prediction functions

Experimental Results

Conclusions O

Predict CiliaDam

When causality matters for prediction Tillman and Spirtes NIPS 2008 Workshop on Causality

Invariance of prediction functions

Experimental Results

Conclusions O

Parents of CiliaDam

When causality matters for prediction Tillman and Spirtes NIPS 2008 Workshop on Causality

Invariance of prediction functions

Experimental Results

Conclusions O

Children of CiliaDam

Invariance of prediction functions

Experimental Results

Conclusions O

Coparents (spouses) of CiliaDam

Invariance of prediction functions

Experimental Results

Definition

In a causal Bayesian network $\mathcal{B} = \langle \mathcal{G}, P \rangle$ over variables **V**, the Markov Blanket for $X \in \mathbf{V}$ is the minimal set of variables $\mathbf{MB}_X^{\mathcal{G}} \subseteq \mathbf{V}/\{X\}$ such that $X \perp \mathbf{V}/\mathbf{MB}_X^{\mathcal{G}} \mid \mathbf{MB}_X^{\mathcal{G}}.$

Invariance of prediction functions

Experimental Results

Definition

In a causal Bayesian network $\mathcal{B} = \langle \mathcal{G}, P \rangle$ over variables **V**, the Markov Blanket for $X \in \mathbf{V}$ is the minimal set of variables $\mathbf{MB}_X^{\mathcal{G}} \subseteq \mathbf{V}/\{X\}$ such that $X \perp \mathbf{V}/\mathbf{MB}_X^{\mathcal{G}} \mid \mathbf{MB}_X^{\mathcal{G}}.$

Theorem (Pearl, 1988)

The Markov blanket for X consists of the parents, children and coparents of X in \mathcal{G} .

Causation	and	Prediction

Experimental Results

Conclusions O

Interventions

Experimental Result

Conclusions O

Conditions for invariance of prediction under manipulations

Theorem (Prediction invariance)

In a causal Bayesian network $\mathcal{B} = \langle \mathcal{G}, P \rangle$ over variables V, let $T \in V$ be a target, $X \subseteq V$ a set of predictor variables, and $Y \subseteq V$ the set of manipulated variables. If $X \supseteq MB_T^{\mathcal{G}}$ and $\forall Y \in Y, Y \neq T$ and $Y \notin Children(T)$, then prediction of T using X is invariant under the manipulation.

Invariance of prediction functions

Experimental Result

Conclusions O

Conditions for invariance of prediction under manipulations

 $P(T \mid \mathbf{X}) = P(T \mid \mathbf{MB}_T^{\mathcal{G}})$

Invariance of prediction functions

Experimental Result

Conclusions O

Conditions for invariance of prediction under manipulations

$$P(T \mid \mathbf{X}) = P(T \mid \mathbf{MB}_{T}^{\mathcal{G}})$$
$$= \frac{P(T, \mathbf{MB}_{T}^{\mathcal{G}})}{\sum_{T} P(T, \mathbf{MB}_{T}^{\mathcal{G}})}$$

Invariance of prediction functions

Experimental Result

Conclusions O

Conditions for invariance of prediction under manipulations

$$\begin{split} P(T \mid \mathbf{X}) &= P(T \mid \mathbf{MB}_{T}^{\mathcal{G}}) \\ &= \frac{P(T, \mathbf{MB}_{T}^{\mathcal{G}})}{\sum_{T} P(T, \mathbf{MB}_{T}^{\mathcal{G}})} \\ &= \frac{\prod_{X \in T \cup \mathbf{Children}(T) \cup \mathbf{Parents}(T) \cup \mathbf{Coparents}(T)}{\sum_{T} \prod_{X \in T \cup \mathbf{Children}(T) \cup \mathbf{Parents}(T) \cup \mathbf{Coparents}(T)} P(X \mid \mathbf{Parents}(T))} \end{split}$$

in the Markov blanket subgraph

. . .

Invariance of prediction functions

Experimental Results

Conclusions O

Conditions for invariance of prediction under manipulations

$$\begin{split} P(T \mid \mathbf{X}) &= P(T \mid \mathbf{MB}_{T}^{\mathcal{G}}) \\ &= \frac{P(T, \mathbf{MB}_{T}^{\mathcal{G}})}{\sum_{T} P(T, \mathbf{MB}_{T}^{\mathcal{G}})} \\ &= \frac{\prod_{X \in T \cup \mathbf{Children}(T) \cup \mathbf{Parents}(T) \cup \mathbf{Coparents}(T)}{\sum_{T} \prod_{X \in T \cup \mathbf{Children}(T) \cup \mathbf{Parents}(T) \cup \mathbf{Coparents}(T)} P(X \mid \mathbf{Parents}(T)) \end{split}$$

in the Markov blanket subgraph

$$= \frac{\prod_{X \in T \cup \mathbf{Children}(T)} P(X \mid \mathbf{Parents}(T))}{\sum_{T} \prod_{X \in T \cup \mathbf{Children}(T)} P(X \mid \mathbf{Parents}(T))}$$

Invariance of prediction functions

Experimental Results

Correcting for manipulations

Theorem (Causal correction)

In a causal Bayesian network $\mathcal{B} = \langle \mathcal{G}, P \rangle$ over variables V, let T be a target and $Y \subseteq V$ the set of manipulated variables. $P\left(T \mid \boldsymbol{MB}_{T}^{\mathcal{G}(Policy(\boldsymbol{Y}))}\right)$, is invariant under the manipulation of **Y** if $\nexists Y \in \mathbf{Y}$, such that $Y \in Children(T)$ and Y is an ancestor of some $C \in Children(T) \cap V/Y.$

Invariance of prediction functions

Experimental Results

Correcting for manipulations

Theorem (Causal correction)

In a causal Bayesian network $\mathcal{B} = \langle \mathcal{G}, P \rangle$ over variables V, let T be a target and $Y \subseteq V$ the set of manipulated variables. $P\left(T \mid \boldsymbol{MB}_{T}^{\mathcal{G}(Policy(\boldsymbol{Y}))}\right)$, is invariant under the manipulation of **Y** if $\nexists Y \in \mathbf{Y}$, such that $Y \in Children(T)$ and Y is an ancestor of some $C \in Children(T) \cap V/Y.$

Invariance of prediction functions

Experimental Results

Correcting for manipulations

Theorem (Causal correction)

In a causal Bayesian network $\mathcal{B} = \langle \mathcal{G}, P \rangle$ over variables V, let T be a target and $Y \subseteq V$ the set of manipulated variables. $P\left(T \mid \boldsymbol{MB}_{T}^{\mathcal{G}(Policy(\boldsymbol{Y}))}\right)$, is invariant under the manipulation of **Y** if $\nexists Y \in \mathbf{Y}$, such that $Y \in Children(T)$ and Y is an ancestor of some $C \in Children(T) \cap V/Y.$

Invariance of prediction functions

Experimental Results

Correcting for manipulations

Theorem (Causal correction)

In a causal Bayesian network $\mathcal{B} = \langle \mathcal{G}, P \rangle$ over variables V, let T be a target and $Y \subseteq V$ the set of manipulated variables. $P\left(T \mid \boldsymbol{M}\boldsymbol{B}_{T}^{\mathcal{G}(Policy(\boldsymbol{Y}))}\right)$, is invariant under the manipulation of **Y** if $\nexists Y \in \mathbf{Y}$, such that $Y \in Children(T)$ and Y is an ancestor of some $C \in Children(T) \cap V/Y.$

Causation	and	Prediction

Experimental Results

Conclusions O

Experiments

Hypotheses:

• Noncausal methods will be equivalent or better when no children are manipulated

Causation	and	Prediction

Experiments

Hypotheses:

- Noncausal methods will be equivalent or better when no children are manipulated
- Causal methods will do increasingly better than noncausal methods as more children are manipulated

Invariance of prediction functions

Experimental Results

Conclusions O

Model for experiments

Causation	and	Prediction

Experimental Results

Experiments

Method:

• Train causal and noncausal prediction methods on unmanipulated population (linear Gaussians)

Causation	and	Prediction

Experimental Results

Experiments

Method:

- Train causal and noncausal prediction methods on unmanipulated population (linear Gaussians)
- Manipulate 0, 5, 10 random nonchildren of *T* (including Markov blanket)

Causation	and	Prediction

Experiments

Method:

- Train causal and noncausal prediction methods on unmanipulated population (linear Gaussians)
- Manipulate 0, 5, 10 random nonchildren of *T* (including Markov blanket)
- Manipulate $0, \ldots, 9$ children of *T* in addition

Experiments

Method:

- Train causal and noncausal prediction methods on unmanipulated population (linear Gaussians)
- Manipulate 0, 5, 10 random nonchildren of *T* (including Markov blanket)
- Manipulate $0, \ldots, 9$ children of *T* in addition
- Predict *T* from manipulated distribution

Causation	and	Prediction

Experimental Results

Conclusions O

Differences between distributions

Squared difference between ground truth predictions for *T* using unmanipulated and manipulated model

Causation	and	Prediction	

Experimental Results

Prediction methods

Noncausal Methods:

- **LR-ALL** linear regression using all predictors
- LR-MB linear regression using only the Markov blanket
- LASSO "least absolute shrinkage and selection operator"
- SVR-RBF support vector regression using radial kernel
- **RVR-RBF** relevance vector regression using radial kernel

Causation	and	Prediction

Experimental Results

Prediction methods

Noncausal Methods:

LR-ALL	linear regression using all predictors
LR-MB	linear regression using only the Markov blanket
LASSO	"least absolute shrinkage and selection operator"
SVR-RBF	support vector regression using radial kernel
RVR-RBF	relevance vector regression using radial kernel

Causal Methods:

- **LR-MB/C** linear regression with Markov blanket correcting for manipulated children
- LR-MB/C* linear regression with Markov blanket correcting for manipulated children and active paths to unmanipulated children

Invariance of prediction functions

Experimental Results

Conclusions O

Total prediction error

0 Manipulated Nonchildren of T

Invariance of prediction functions

Experimental Results

Conclusions O

Total prediction error

5 Manipulated Nonchildren of T

Invariance of prediction functions

Experimental Results

Conclusions O

Total prediction error

10 Manipulated Nonchildren of T

Causation and Prediction	Invariance of prediction functions	Experimental Results	Conclusions O
Nonlinear data			

• Repeated previous simulations adding nonlinear dependencies

Causation	and	Prediction	

Nonlinear data

- Repeated previous simulations adding nonlinear dependencies
- Results so far inconclusive
- In general, nonparametric methods do best, though poor performance in all cases

Causation and Prediction	Invariance of prediction functions	Experimental Results	Conclusions •
Conclusions			

Causation and Prediction	Invariance of prediction functions	Experimental Results	Conclusions
Conclusions			

• Unless noncausal method is invariant under the manipulation

Causation and Prediction	Invariance of prediction functions	Experimental Results	Conclusions •
Conclusions			

- Unless noncausal method is invariant under the manipulation
- But causality is needed to know noncausal methods are invariant!

Causation and Prediction	Invariance of prediction functions	Experimental Results	Conclusions
			•
Conclusions			

- Unless noncausal method is invariant under the manipulation
- But causality is needed to know noncausal methods are invariant! In practice?
 - Tradeoff between errors related to causality and errors related to parametric assumptions, overfitting, etc.

Causation and Prediction	Invariance of prediction functions	Experimental Results	Conclusions
Conclusions			

- Unless noncausal method is invariant under the manipulation
- But causality is needed to know noncausal methods are invariant! In practice?
 - Tradeoff between errors related to causality and errors related to parametric assumptions, overfitting, etc.
 - Noncausal prediction may be frequently invariant (or *almost* invariant)
 - Advantages of nonparametric methods and methods which deal with overfitting well may cancel out errors related to causality

Causation and Prediction	Invariance of prediction functions	Experimental Results	Conclusions
			•
Conclusions			

- Unless noncausal method is invariant under the manipulation
- But causality is needed to know noncausal methods are invariant! In practice?
 - Tradeoff between errors related to causality and errors related to parametric assumptions, overfitting, etc.
 - Noncausal prediction may be frequently invariant (or *almost* invariant)
 - Advantages of nonparametric methods and methods which deal with overfitting well may cancel out errors related to causality
 - Many other variables involved, analysis incomplete