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• Supervised clustering motivation
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• Application to real problems



Clustering Marbles

By what criteria do we consider two marbles “similar”?



Multiple Possible 
Criteria for Similarity

By Transparency?

By Color? By Size?



How to Adjust

• Manual - Adjust to get desired clusters.

• Semi-supervised clustering - Provide 
constraints on item pairs.  Clustering 
algorithm works to satisfy the constraints.

• Supervised clustering - Provide a series 
of tuples: an item set, and a clustering of that 
set, and learning how to cluster.



Noun Phrase 
Coreference

• Given the noun phrases in a document, 
cluster by which refer to the same entity.

x y

The policeman fed

the cat. He did not know

that  he was late.

The cat is called Peter.

The policeman fed

the cat. He did not know

that he was late.

The cat is called Peter.

y



News Story Clustering
Llama Summit 

Fails
A key economic summit aimed 
at alleviating the plight of the 
long suffering llama ended today 
with no agreement in sight.  
Delegates were agitated.  "I don't 
like llamas," Maria Chavez said. 
"Alpacas are much better!"

End of the 

Llama?
Delegates returned without 
agreement from a meeting in 
Lima on llamas.  Maria Chavez 
expressed her discontent by 
pointing out "alpacas are much 
better!"  Others disagree, and 
have called alpacas "stupid."

Llama Vs. 

Alpaca
The Lima llama summit has not 
yielded agreement, but stoked 
the fires of hatred on both sides 
of the llama versus alpaca blood 
feud.  Some say alpacas are 
"stupid" while others claim they 
are "much better" than llamas.

Earth 

Conquered
Today an alien ship appeared 
above New York, laid waste to 
the city, and enslaved the 
survivors.  Said Gorthog the 
Mighty, "do not resist your new 
lords, pathetic human slaves!"  
Earth surrendered immediately.

Gorthog to 

Earth Speech
All your base are belong to us!  
Surely the few remaining 
erstwhile defenders of humanity 
cannot prevent us from having 
our way with your women.  Do 
not resist your new lords, 
pathetic human slaves!

Op-Ed:Gorthog 

is Very Mean
This Gorthog character that 
declared himself lord of earth 
has said and done some mean 
and hurtful things since his 
arrival!  I would like to invite him 
to my anger management group 
to help him with his problems. 

Second 

Redefined
In an effort to alleviate busy 
schedules, a second is now what 
was half a second, so days are 
now 48 hours.  You'll have to 
work twice as long, but this 
should give you twice as much 
time to relax and have fun!

Time Changed 

too Much?
Some questioned the wisdom in 
redefining time.  "It hasn't 
actually produced time," said 
Kelly Clark. "It just requires that 
we all buy new clocks.  This is 
only the government caving to 
the powerful clock industry!"

Time to Drink 

More Beer
What are people doing with all 
their new free time?  Drinking!  
While some agitators claim "it 
hasn't ... produced time," others 
like this reporter disagree and 
are whiling away the lengthly 
days by getting hammered.
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How Do We Learn?

• A sequence of n training examples.

• From this training data we learn how to 
cluster future sets of items.

(x1,y1), . . . ,(xn,yn)

( , ) ( , ),…,



Simple Clustering

• Given a set of m items.

• Similarity measure 
between item pairs.

• Produce partitioning of 
the item set w.r.t. 
similarity measure over 
an objective function.
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Clustering Objective 
Function

• Clusterer assigns items 
to clusters to maximize 
an objective function.

• Objective function here: 
sum of similarity of pairs 
in same cluster (Bansal, et 
al. 2002). Result:
{a,b,c,d}, {e,f,g}, {h,i}

• Allows discrepancies if 
net effect is positive.

Matrix of similarities!



Pairwise Features & Similarity
• For each pair i and j in an item set, there is a 

pairwise feature vector ϕij.

• Similarity of i and j is an inner product of ϕij 

and a learned vector w. Sim(xi,x j) =
〈
w,φi j

〉
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Naïve Training Example
• Set x with partitioning y.  

Learn by simple classifier 
(Ng, Cardie, 2002).

• Positive examples:
ϕ12, ϕ34, ϕ35, ϕ45.

• Negative examples:
ϕ13, ϕ14, ϕ15, ϕ23, ϕ24, ϕ25.

• Linear SVM trained on 
these will learn a weight 
vector w.
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w,φi j
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Problem 1: Hard Coded 
Performance Measure

• Application needs different performance 
measure, e.g., MITRE F-measure for NP 
coreference.

• Imbalanced positive/negative ratio.



Problem 2:
Clustering Interactions

• Consider the NP 
coreference problem.

• Can a classifier learn 
considering pairs like 
these in isolation?

• Perhaps can learn with 
indirect dependencies.

‘A Balrog,’ muttered Gandalf. ‘Now I understand.’ 
He faltered and leaned heavily on his staff. ‘What 

an evil fortune! And I am already weary.’

‘Mithrandir we called him in elf-fashion,’ said 
Faramir, ‘and he was content. Many are my names 
in many countries, he said. Mithrandir among the 
Elves, Tharkûn to the Dwarves; Olórin I was in 
my youth in the West that is forgotten, in the 

South Incánus, in the North Gandalf; to the East I 
go not.’

‘Mithrandir!’ he cried. ‘Mithrandir!’
‘Well met, I say to you again, Legolas!’ said the old man.
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SVMstruct Overview

• SVMstruct: adaptation of SVMlight for learning 
functions with complex output space. 
(Tsochantaridis, et al. 2004)

• Can learn functions from x to y of the form

• Ψ(x,y) characterizes relationship between 
input x and output y.

f (x;w) = argmax
y∈Y

〈w,Ψ(x,y)〉



• Let Ψ sum of ϕij for all i,j in 
x in the same cluster in y 
divided by square of 
number of items, e.g.:

• This 
equivalent to correlation 
clustering objective!

Ψ for Clustering

x
1

x
2

x
3

x
4

x
5

Ψ(x,y) =
1
52

(
φ1,2+φ3,4+φ3,5+φ4,5

)

〈w,Ψ(x,y)〉



Δ for Clustering

• Measures how unrelated 
two clusterings are.

• Pairwise loss.  Over 
pairs, get proportion of 
disagreement w.r.t. 
cluster relationships.

• MITRE loss, specific to 
NP coreference.
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Linear Constraint

• For all training examples, and for all possible 
wrong clusterings, keep the value of the 
objective function for the correct clustering 
greater than the value of the objective 
function for every wrong clustering, and 
make sure they differ by at least the loss 
between the right and wrong clustering.  We 
allow slack as an upper bound on loss.

∀i,∀y ∈ Y \{yi} : 〈w,Ψ(xi,yi)〉 ≥ 〈w,Ψ(xi,y)〉+Δ(yi,y)−ξi



Quadratic Program 
Formulation

• Can’t really introduce a constraint for every 
wrong clustering for every example!

• Instead, find a “select few” constraints, and 
introduce those! (Tsochantaridis, et al. 2004)

min
w,ξ

1
2
‖w‖2+

C
n

n

∑
i=1

ξi

s.t. ∀i : ξi ≥ 0
∀i,∀y ∈ Y \{yi} : 〈w,Ψ(xi,yi)〉−〈w,Ψ(xi,y)〉 ≥ Δ(yi,y)−ξi



Algorithm to Select 
Constraints

• Iteratively find clustering 
ŷ associated with the 
most violated constraint.

• Ignore the constant, and 
this is our clustering 
objective plus the loss.

• We can find ŷ for this 
argmax with a clustering 
function variant.

Supervised Clustering with Support Vector Machines

the loss between yi and y. Note that
∑n

i=1 ξi upper
bounds the training loss.

The quadratic program (5-6) introduces a constraint
for every possible wrong clustering of the set. Unfor-
tunately, the number of wrong clusterings scales more
than exponentially with the number of items. The ap-
proach in the structural SVM algorithm is to start with
no constraints, and iteratively find the most violated
constraint. This algorithm for SVM∆m

1 is:
1: Input: (x1,y1), . . . , (xn,yn), C, ε
2: Si ← ∅ for all i = 1, . . . , n
3: repeat
4: for i = 1, . . . , n do
5: H(y) ≡ ∆(yi,y)+wT Ψ(xi,y)−wT Ψ(xi,yi)
6: compute ŷ = argmaxy∈Y H(y)
7: compute ξi = max{0,maxy∈Si H(y)}
8: if H(ŷ) > ξi + ε then
9: Si ← Si ∪ {ŷ}

10: w ← optimize primal over S =
⋃

i SI

11: end if
12: end for
13: until no Si has changed during iteration

By solving argmaxy H(y), the algorithm finds the clus-
tering ŷ associated with the most violated constraint
for (xi,yi). Since H is the minimum necessary slack
for ŷ under the current w, if H(ŷ) > ξi + ε, the con-
straint is violated by more than ε, so we introduce
the constraint and re-optimize. The algorithm repeats
this process until no new constraints are introduced.
(Tsochantaridis et al., 2004) proves the convergence
and (Joachims, 2003) proves the correctness of the al-
gorithm. We state the theorems but omit the proofs.

Theorem 1 Let ∆̄ = max(xi,yi)∈S (maxy ∆(yi,y))
and R̄ = max(xi,yi)∈S (maxy ‖Ψ(xi,yi)−Ψ(xi,y)‖)
for a training sample S. Then, the structural
SVM algorithm converges after introducing at most
max

{
2n∆̄

ε , 8Cn∆̄R̄2

ε2

}
constraints.

Theorem 2 The algorithm returns an approximation
with an objective less than or equal to QP (5-6)’s ob-
jective. All constraints are fulfilled within ε.

For simplicitly, the previous discussion considered only
the linear case where the pairwise similarity is the in-
ner product of the pairwise feature vector φ with w.
However, in the dual w is some linear combination of
all φ, so nonlinear mappings are possible through ker-
nels as with a regular SVM. However, since deriving
each pairwise similarity requires a kernel evaluation of
the φ with every component of w, the use of kernels
in this particular problem appears to be impractical
except for clustering over very small sets of items.

5. Approximate Inference

In this section we describe the difficulty of finding the
most violated constraint in argmaxy H(y) and suggest
methods for approximately finding the most violated
constraint with two clustering methods.

Consider the cost function H.

H(y) ≡ ∆(yi,y) + wT Ψ(xi,y)−wT Ψ(xi,yi) (8)

The last term is a constant, and so can be ignored since
it does not change the maximum. The cost function
is a loss ∆ between the true labeling yi and predic-
tion y plus the correlation clustering objective func-
tion. Finding the y to maximize the correlation clus-
tering objective function is NP-complete (Bansal et al.,
2002), and the addition of the loss is unlikely to help
tractability, so finding argmaxy H(y) is intractable.
Fortunately algorithms exist for approximately maxi-
mizing these clustering objectives, and argmaxy H(y).
These approximations will not solve argmaxy H(y) ex-
actly, but are possibly close enough that SVMcluster

still learns something reasonable. Applying a similar
margin maximizing framework to perform collective
classifications, (Taskar et al., 2004) inferred approxi-
mated constraints with a linear relaxation. Approxi-
mate inference may work for clustering as well.

How are the termination and the correctness of the
structural SVM algorithm affected if one uses approx-
imate maximization of H(y)? The proof of polyno-
mial time termination in Theorem 1 still holds. The
proof does not depend upon finding argmaxy H(y) ex-
actly, but rather that new introduced constraints are
violated by more than ε, and so cause the quadratic
objective to increase by a minimum amount. How-
ever, the proof of correctness for Theorem 2 no longer
holds. Without finding argmaxy H(y) exactly, either
violated constraints may remain undetected, or the
objective may be raised. We consider two approxi-
mations: a simple greedy approach CG, and a real
relaxation of correlation clustering CR (Demaine &
Immorlica, 2003). We consider how they impact the
correctness of the algorithm in the sequel, and later in
Section 7 empirically evaluate their performance.

5.1. Greedy Approximation, CG

To greedily approximate argmaxy H(y), start with an
initial partitioning y with every item of x in its own
cluster. Repeatedly find and merge the two clusters
yi, yj ∈ y that would maximally increase H(y). Halt
and return y when no merge increases H(y).

Corollary 3 The greedy approximation CG leads to
an underconstrained program with respect to QP (5-6),



Computing the Argmax

• Exact argmax - impractical 
and must approximate.

• Greedy Clustering - Get 
a lower bounded argmax 
approx, underconstrained QP.

• Real relaxation - 
(Demaine, Immorlica, 2003), 
get upper bounded argmax 
approx, overconstrained QP.

δΨi(y) = Ψ(xi, yi)−Ψ(xi, y)

1: Input: (x1,y1), . . . , (xn,yn), C, ε
2: Si ← ∅ for all i = 1, . . . , n
3: repeat
4: for i=1, . . . , n do
5: set up a cost function

H(y) = ∆(yi,y) + 〈w, Ψ(xi,y)〉 − 〈w, Ψ(xi,yi〉
6: compute ŷ = argmaxy∈Y H(y)
7: compute ξi = max{0, maxy∈Si H(y)}
8: if H(ŷ) > ξi + ε then
9: Si ← Si ∪ {ŷ}

10: w ← solution to Q.P. with constraints for
⋃

i Si

11: end if
12: end for
13: until no Si has changed during iteration

1

Solution with exact argmaxes.

Real relaxation approximate 
argmaxes, overconstrained.

Greedy approximate 
argmaxes, underconstrained.
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• Data

• MUC-6 task.

• Features supplied by Ng and Cardie.

• Approaches

• SVMlight trained on all pairs, then greedy 
correlation clustering, denoted PCC 
(pairwise classifier clustering).

• SVMstruct with greedy correlation clustering.

NP Coreference
x y

The policeman fed

the cat. He did not know

that  he was late.

The cat is called Peter.

The policeman fed

the cat. He did not know

that he was late.

The cat is called Peter.

y



News Story Clustering
• Trawled Google News to build our own 

dataset.

• Each day for 30 days, select at most 15 news 
articles from at most 70 related stories -- 
usually ~900 articles/day.

• Cluster ~900 articles in a day.  The 70 
related story groups formed the clusters.

• Train on first 15 day sets, test on last 15 day 
sets.



Building the pairwise 
feature vector ϕ

• 31 features of the following kind:
1: cos sim. of unigrams in title
2: cos sim. of bigrams in title 
3: cos sim. of trigrams in title
4: cos sim. of unigrams in headline
                      …
30: cos sim. of porter stemmed trigrams in 
	 quoted article text
31: always 1!



SVMcluster vs. PCC
• Entries are errors, either 

MITRE loss ΔM or pairwise 
loss ΔP, “Default” is “worst” 
error.

• Header training method.  Left 
column testing clustering 
method and error rate.

• NP Coref: SVMcluster 
significantly better for
both MITRE and
Pairwise loss training.

• News: SVMcluster and PCC do 
not differ significantly.

Noun Phrase
SVMcluster 

CG
PCC Def.

Test with CG, ΔM 41.3 51.6 51.0

Test with CG, ΔP 2.89 3.15 3.59

News
SVMcluster 

CG

SVMcluster 
CR

PCC Def.

Test with CG, ΔP 2.36 2.43 2.45 9.45

Test with CR*, ΔP 2.04 2.08 1.96 9.45



Optimizing to Right Δ
• SVMcluster can optimize to an 

arbitrary clustering loss.  
Does this matter?

• Perverse test: Train and 
optimize model to one loss.  
Evaluate its performance 
with another loss.

• Not significantly different 
for evaluation on ΔM, quite 
different for ΔP.  Even worse 
than default!!

Noun Phrase Opt. to ΔM Opt. to ΔP

Test on ΔM 41.3 42.8

Test on ΔP 4.06 2.89



Inclusion of Δ in Finding 
Constraint

• Recall portion of algorithm 
where the ŷ associated with 
most violated constraint is 
computed.

• What if we drop Δ(yi,y) from 
the cost function, and just 
maximize the objective?

• Note: when we introduce 
constraint, we still include
Δ(yi,ŷ) in constraint!

• Never significant.  Good news!
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the loss between yi and y. Note that
∑n

i=1 ξi upper
bounds the training loss.

The quadratic program (5-6) introduces a constraint
for every possible wrong clustering of the set. Unfor-
tunately, the number of wrong clusterings scales more
than exponentially with the number of items. The ap-
proach in the structural SVM algorithm is to start with
no constraints, and iteratively find the most violated
constraint. This algorithm for SVM∆m

1 is:
1: Input: (x1,y1), . . . , (xn,yn), C, ε
2: Si ← ∅ for all i = 1, . . . , n
3: repeat
4: for i = 1, . . . , n do
5: H(y) ≡ ∆(yi,y)+wT Ψ(xi,y)−wT Ψ(xi,yi)
6: compute ŷ = argmaxy∈Y H(y)
7: compute ξi = max{0,maxy∈Si H(y)}
8: if H(ŷ) > ξi + ε then
9: Si ← Si ∪ {ŷ}

10: w ← optimize primal over S =
⋃

i SI

11: end if
12: end for
13: until no Si has changed during iteration

By solving argmaxy H(y), the algorithm finds the clus-
tering ŷ associated with the most violated constraint
for (xi,yi). Since H is the minimum necessary slack
for ŷ under the current w, if H(ŷ) > ξi + ε, the con-
straint is violated by more than ε, so we introduce
the constraint and re-optimize. The algorithm repeats
this process until no new constraints are introduced.
(Tsochantaridis et al., 2004) proves the convergence
and (Joachims, 2003) proves the correctness of the al-
gorithm. We state the theorems but omit the proofs.

Theorem 1 Let ∆̄ = max(xi,yi)∈S (maxy ∆(yi,y))
and R̄ = max(xi,yi)∈S (maxy ‖Ψ(xi,yi)−Ψ(xi,y)‖)
for a training sample S. Then, the structural
SVM algorithm converges after introducing at most
max

{
2n∆̄

ε , 8Cn∆̄R̄2

ε2

}
constraints.

Theorem 2 The algorithm returns an approximation
with an objective less than or equal to QP (5-6)’s ob-
jective. All constraints are fulfilled within ε.

For simplicitly, the previous discussion considered only
the linear case where the pairwise similarity is the in-
ner product of the pairwise feature vector φ with w.
However, in the dual w is some linear combination of
all φ, so nonlinear mappings are possible through ker-
nels as with a regular SVM. However, since deriving
each pairwise similarity requires a kernel evaluation of
the φ with every component of w, the use of kernels
in this particular problem appears to be impractical
except for clustering over very small sets of items.

5. Approximate Inference

In this section we describe the difficulty of finding the
most violated constraint in argmaxy H(y) and suggest
methods for approximately finding the most violated
constraint with two clustering methods.

Consider the cost function H.

H(y) ≡ ∆(yi,y) + wT Ψ(xi,y)−wT Ψ(xi,yi) (8)

The last term is a constant, and so can be ignored since
it does not change the maximum. The cost function
is a loss ∆ between the true labeling yi and predic-
tion y plus the correlation clustering objective func-
tion. Finding the y to maximize the correlation clus-
tering objective function is NP-complete (Bansal et al.,
2002), and the addition of the loss is unlikely to help
tractability, so finding argmaxy H(y) is intractable.
Fortunately algorithms exist for approximately maxi-
mizing these clustering objectives, and argmaxy H(y).
These approximations will not solve argmaxy H(y) ex-
actly, but are possibly close enough that SVMcluster

still learns something reasonable. Applying a similar
margin maximizing framework to perform collective
classifications, (Taskar et al., 2004) inferred approxi-
mated constraints with a linear relaxation. Approxi-
mate inference may work for clustering as well.

How are the termination and the correctness of the
structural SVM algorithm affected if one uses approx-
imate maximization of H(y)? The proof of polyno-
mial time termination in Theorem 1 still holds. The
proof does not depend upon finding argmaxy H(y) ex-
actly, but rather that new introduced constraints are
violated by more than ε, and so cause the quadratic
objective to increase by a minimum amount. How-
ever, the proof of correctness for Theorem 2 no longer
holds. Without finding argmaxy H(y) exactly, either
violated constraints may remain undetected, or the
objective may be raised. We consider two approxi-
mations: a simple greedy approach CG, and a real
relaxation of correlation clustering CR (Demaine &
Immorlica, 2003). We consider how they impact the
correctness of the algorithm in the sequel, and later in
Section 7 empirically evaluate their performance.

5.1. Greedy Approximation, CG

To greedily approximate argmaxy H(y), start with an
initial partitioning y with every item of x in its own
cluster. Repeatedly find and merge the two clusters
yi, yj ∈ y that would maximally increase H(y). Halt
and return y when no merge increases H(y).

Corollary 3 The greedy approximation CG leads to
an underconstrained program with respect to QP (5-6),

with loss no loss

NP-coreference, ΔM 41.3 41.1

NP-coreference, ΔP 2.89 2.81

News, train CG, test CG 2.36 2.42

News, train CR, test CR* 2.08 2.16



Real Relaxation versus 
Greedy Clustering

• What about 
underconstrained (with 
greedy CG) versus 
overconstrained (with 
relaxed CR) for training?

• Neither is significantly 
different from the other.

News Train CG Train CR

Test CG 2.36 2.43

Test CR* 2.04 2.08



Conclusions
• Content

• Adapted SVMstruct to clustering.

• Advantages more obvious on problems 
with complex interactions among objects, 
or that use special performance measures.

• Future Work

• Application to other problems.

• Extend to semi-supervised clustering.


