Welcame to 3.091

Lecture 12 October 6, 2004

TABLE 4.3 The Relationship Between the Number of Electron Domains and the Geometry Around an Atom

Electron Domains	Bonding Domains	Nonbonding Domains	Distribution of Electrons	Molecular Geometry	Examples
2 (sp)	2	0	Linear	Linear	$\mathrm{BeF}_{2}, \mathrm{CO}_{2}$
	1	1		Linear	$\mathrm{CO}, \mathrm{N}_{2}$
$3\left(s p^{2}\right)$	3	0	Trigonal planar	Trigonal planar	$\mathrm{BF}_{3}, \mathrm{CO}_{3}{ }^{2-}$
	2	1		Bent	$\mathrm{O}_{3}, \mathrm{SO}_{2}$
	1	2		Linear	-
$4\left(s p^{3}\right)$	4	0	Tetrahedral	Tetrahedral	- $\mathrm{CH}_{4} \mathrm{SO}_{4}{ }^{2-}$
	3	1		Trigonal pyramidal	$\mathrm{ivH}_{3}, \mathrm{H}_{3} \mathrm{O}^{+}$
	2	2		Bent	$\mathrm{H}_{2} \mathrm{O}, \mathrm{ICl}_{2}{ }^{+}$
	1	3		Linear	$\mathrm{HF}, \mathrm{OH}^{-}$
$5\left(s p^{3} d\right)$	5	0	Trigonal bipyramidal	Trigonal bipyramidal	PF_{5}
	4	1		Seesaw	SF4 $\mathrm{F}_{4}{ }^{+}$
	3	2		T shaped	CiF_{3}
	2	3		Linear	$\mathrm{I}^{-} \mathrm{XeF}_{2}$
$6\left(s p^{3} d^{2}\right)$	6	0	Octahedral	Octahedral	$\mathrm{SF}_{6} \mathrm{PF}_{6}-$
	5	1		Square pyramidal	
	4	2		Square planar	$\mathrm{Xe}_{4}\left(\mathrm{CCl}_{4}^{-}\right)$

dipole - diple

dipole-
indeceed dipsole
(Solutions)

The Effect of Molecular Volume on London Dispersion Forces

$\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right) \mathrm{CH}_{3} \quad \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{3} \quad \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{18} \mathrm{CH}_{3}$
$\mathrm{C}_{3} \mathrm{H}_{8}$
propane
MW 44
$\mathrm{mp}-190^{\circ} \mathrm{C}$
bp $-42^{\circ} \mathrm{C}$
gas at RT
$\mathrm{C}_{8} \mathrm{H}_{18}$
octane
MW 114
$\mathrm{mp}=57^{\circ} \mathrm{C}$
bp $+125^{\circ} \mathrm{C}$
liquid at $R T$
$\mathrm{C}_{20} \mathrm{H}_{42}$
eicosane
MW 282
$\mathrm{mp}+37^{\circ} \mathrm{C}$
bp $+343^{\circ} \mathrm{C}$
solid at RT

$$
\begin{array}{lcc}
& \text { AVEE } & \chi \\
\mathrm{F} & 24 & 4.19 \\
\mathrm{O} & 20 & 3.61 \\
\mathrm{~N} & 19 & 3.07 \\
\hline \mathrm{Cl} & 17 & 2.87 \\
\mathrm{Br} & 16 & 2.69 \\
\mathrm{C} & 15 & 2.54 \\
\mathrm{H} & 13.6 & 2.30
\end{array}
$$

Values of Electrical Conductivity (S^{-1})

silver	6.1×10^{7}
copper	5.9×10^{7}
aluminum	3.7×10^{7}
stainless steel	1.4×10^{6}
graphite	7.3×10^{4}
lead dioxide	1.1×10^{4}
silicon	4.4×10^{-4}
germanium	1.1×10^{-5}
gallium arsenide	10^{-6}
diamond	10^{-11}
PMMA	$<10^{-12}$
aluminum oxide	10^{-14}
polystyrene	$<10^{-14}$
PTFE	$<10^{-16}$

$S \equiv$ Siemens

$$
S=o h m^{-1}=\Omega^{-1}=m h o
$$

Charles William Siemens (born Karl Wilhelm Siemens)

- open-hearth furnace 1861
- trans-Atlantic telegraph cable 1875
- electric traction

Georg Simon Ohm

- Ohm's Law 1827

Thomas " $s p$ " ${ }^{3 \prime}$ Midgley

- 1916 Dayton Engineering Company (DELCO)
- 1921 discovers tetraethyl lead (TEL), an anti-knock agent for gasoline

$$
\mathrm{Pb}:[\mathrm{Xe}] 4 \mathrm{r}^{14} 5 \mathrm{~d}^{10}(8) \sqrt{9} \Rightarrow 6 \mathrm{SP}^{4}
$$

$\mathrm{Et} \equiv \mathrm{C}_{2} \mathrm{H}_{5}$
Et

- 1970s catalytic converters (Pt, Pd, Rh)
- TEL burns to form $\mathrm{H}_{2} \mathrm{O}, \mathrm{CO}_{2}, \mathrm{PbO}$
- PbO reduced to Pb which alloys with catalyst \Rightarrow poisoning \Rightarrow lead-free fuel
- 10¢/gal differential between regular and unleaded fuel
- self-serve gas pumps
\Rightarrow air quality?

