Welcome to 3.091

Lecture 12

October 6, 2004

TABLE 4.3 The Relationship Between the Number of Electron Domains and the Geometry Around an Atom

Electron Domains	Bonding Domains	Nonbonding Domains	Distribution of Electrons	Molecular Geometry	Examples
2 (sp)	2	0	Linear	Linear	BeF ₂ , CO ₂
Charter Da	1	1		Linear	CO,
$3 (sp^2)$	3	0	Trigonal planar	Trigonal planar	BF ₃ , CO ₃ ²⁻
	2	1	-	Bent	O_3 , SO_2
	1	2		Linear	0
$4 (sp^3)$	4	0	Tetrahedral	Tetrahedral	5O ₄ 2-
, -	3	1		Trigonal pyramidal	NH ₃ , H ₃ O ⁺
	2	2		Bent	H ₂ O, ICl ₂ ⁺
	1	3		Linear	HF, OH-
$5 (sp^3d)$	5	0	Trigonal bipyramidal	Trigonal bipyramidal	PF ₅
	4	1	-	Seesaw	F ₄ +
	3	2		T shaped	CIF ₃
	2	3		Linear	L- XeF ₂
$6 (sp^3d^2)$	6	0	Octahedral	Octahedral	SF ₆ , PF ₆
`-	5	1	•	Square pyramidal	BH ₅ , St Cl ₅ ²⁻
	4	2		Square planar	Xer4

)δ- dipole -dipole

dipole—
irduced dipole

(Solutions)

The Effect of Molecular Volume on London Dispersion Forces

CH₃(CH₂)CH₃ CH₃(CH₂)6CH₃

 $CH_3(CH_2)_{18}CH_3$

 C_3H_8

 C_8H_{18}

 $C_{20}H_{42}$

propane

octane

eicosane

MW 44

MW 114

MW 282

mp -190°C

mp -57°C

mp +37°C

bp -42°C

bp +125°C

bp +343°C

gas at RT

liquid at RT

solid at RT

	AVEE (ev)	χ
F	24	4.19
О	20	3.61
N	19	3.07
C1	17	2.87
Br	16	2.69
C	15	2.54
Н	13.6	2.30

Values of Electrical Conductivity $(S m^{-1})$

6.1×10^7
5.9×10^7
3.7×10^7
1.4×10^{6}
7.3×10^4
1.1×10^4
4.4×10^{-4}
1.1×10^{-5}
10^{-6}
10^{-11}
<10 ⁻¹²
10^{-14}
<10 ⁻¹⁴
<10 ⁻¹⁶

$$S \equiv Siemens$$

$$S = ohm^{-1} = \Omega^{-1} = mho$$

Charles William Siemens (born Karl Wilhelm Siemens)

- open-hearth furnace 1861
- trans-Atlantic telegraph cable 1875
- electric traction

Georg Simon Ohm

Ohm's Law 1827

Thomas "sp³" Midgley

- 1916 Dayton Engineering Company (DELCO)
- 1921 discovers tetraethyl lead (TEL), an anti-knock agent for gasoline

Pb: [Xe]4f¹⁴5d¹⁰65p⁴ \$\infty\$

$$Et \equiv C_2H_5$$

- 1970s catalytic converters (Pt, Pd, Rh)
- TEL burns to form H₂O, CO₂, PbO
- PbO reduced to Pb which alloys with catalyst poisoning lead-free fuel
- 10¢/gal differential between regular and unleaded fuel
- self-serve gas pumps

air quality?