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Motivating problem
1-class SVMs

Content based image retrieval

Consider problem of content based image retrieval (CBIR)
using relevance feedback.
There are many metrics under which we can compare
images: colour, texture, objects included, etc.
Learning to identify the target of the search is improved if
we can identify the metric that best characterises the type
of search: eg

sunset scene⇒ colour,
Sunset over waterfall⇒ colour & texture, etc.

Baseline system is PicSOM – uses 11 self-organising
maps (SOMs) to represent database of images in 11
metrics – estimates a density of relevant vs irrelevant to
weight the vertices of each SOM.
Implicitly reweights the metrics via the density.
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1-class SVMs

Negative data is sparse so consider 1-class learning
initially.
Metrics correspond to kernels: so task is about using
combination of kernels to solve a retrieval task.
If we include ‘learning the kernel’, we can automatically
identify the relevant metrics for the particular search.
Potential to scale to very large numbers of
metrics/submetrics.
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Optimisation problem

minw,ξ
1
2‖w‖

2
2 + C ‖ξ‖1

subject to 〈w, φ(xi)〉 ≥ 1− ξi
ξi ≥ 0, i = 1, . . . ,m
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A linear combination of kernels

Let κk denote the k th kernel from a set K = {κ1, . . . , κ|K|} of
kernels. We define a weighted combination of kernels like so:

κz =

|K|∑
k=1

zkκk

where z =
(
z1, . . . , z|K|

)
, zi ∈ R+.
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MKL Optimisation: Constraining the 1-norm (Recap)

Let K = |K|, then we have the following 1-class SVM for MKL
when regularising over the weight vector using the 1-norm
(primal):

minwk ,ξ
1
2

(∑K
k=1 ‖wk‖2

)2
+ C ‖ξ‖1

subject to
∑K

k=1 〈wk , φk (xi)〉 ≥ 1− ξi
ξi ≥ 0, i = 1, . . . ,m
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Constraining the 1-norm continued

The dual becomes:

minβ maxα β
subject to

∑m
i,j=1 αiαjκk (xi ,xj) ≤ β,∑m
i=1 αi = 1,

0 ≤ αi ≤ C, i = 1, . . . ,m.
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Experimental issues

We ran experiments with a set of Gaussian kernels
composed of different width parameters.
Problem: only chose 1 kernel for learning, namely the
Gaussian kernel with the largest width parameter. This is
also true for experiments conducted with the VOC data
sets (cat, cow, dog).
Our conjecture: except in degenerate cases will only
choose 1 kernel.
A solution: Constrain a convex combination of the 1-norm
and 2-norm in the optimisation problem.
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MKL Optimisation: Constraining a combination of the
1-norm and 2-norm

Constraining using both these norms gives us the following
primal problem, with µ controlling the sparsity trade-off,

minwk ,ξ
µ
2

(∑K
k=1 ‖wk‖2

)2
+ 1−µ

2
∑K

k=1 ‖wk‖22 + C ‖ξ‖1
subject to

∑K
k=1 〈wk , φk (xi)〉 ≥ 1− ξi

ξi ≥ 0, i = 1, . . . ,m

John Shawe-Taylor Kernel Learning for Novelty Detection



Introduction
Multiple Kernel Learning

Experiments
Conclusions

Method 1: constraining the 1-norm of the weight vectors
Method 2: constraining a convex combination of the 1-norm and 2-norm of the weight vectors

Constraining a combination of the 1-norm and 2-norm
continued

Let D =
∑K

k=1 ‖wk‖2, then the dual is:

maxα W (α) =
∑m

i=1 αi − A
2
∑K

k=1 βk + B
2

(∑
k∈J
√
βk
)2

subject to βk =
∑m

i,j=1 αiαjκk (xi ,xj)

0 ≤ αi ≤ C, i = 1, . . . ,m

where A = 1/(1− µ) and
B = ((|J| − 1)µ2 + µ)/((1− µ)(1− µ+ µ|J|)2), where
J = {k : zk 6= 0}, is the set of indices k , for which

βk > µ2D2,
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Combination of 1- and 2-norm continued

From the Lagrangian we get,

zk = max
{

0,
1

1− µ

(√
βk

D
− µ

)}
,

Also,

D =

∑
k∈J
√
βk

1− µ+ µ|J|
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Algorithm for combination of 1- and 2-norm

We perform coordinate-wise descent in the α vector. Writing

gi(αi) =
∂W (α)

∂αi
,

where αi is the i-th coordinate of α in the argument of W (·), we
seek the solution of gi(αi) = 0 as the new value for αi .

John Shawe-Taylor Kernel Learning for Novelty Detection



Introduction
Multiple Kernel Learning

Experiments
Conclusions

Method 1: constraining the 1-norm of the weight vectors
Method 2: constraining a convex combination of the 1-norm and 2-norm of the weight vectors

Algorithm for combination of 1- and 2-norm

We expand gi(αi) in a Taylor series around the current values
α0:

gi(αi) ≈
∂W (α0)

∂αi
+
∂W 2(α0)

∂α2
i

(αi − α0
i ) = 0

and solve for αi . Hence our update rule for each αi becomes:

αi = α0
i −

∂W (α0)
∂αi

∂W 2(α0)

∂α2
i

.
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Algorithm for combination of 1- and 2-norm

Initialise α0 vector to zero with one element, say α0
1 > 0.

Repeat until KKT conditions satisfied or ‖αn −αn−1‖2 < ε,
where ε is a small positive real number

Compute update rule for each component of α using:

αi = α0
i −

∂W (α0)
∂αi

∂W 2(α0)

∂α2
i

.

update z and D

Decision function:

f (x) =
m∑

i=1

αi

∑
k∈J

zk

µ+ (1− µ)zk
κk (xi ,x)
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Assessing impact of µ

Including negative examples

Datasets considered

Considered the PASCAL VOC data: cat, cow, dog
11 feature sets extracted for PICSOM

Feature dimensions
DCT coefficients of average colour in rectangular grid 12
CIE L*a*b* colour of two dominant colour clusters 6
Histogram of local edge statistics 80
Haar transform of quantized HSV colour histogram 256
Histogram of interest point SIFT features 256
Average CIE L*a*b* colour 15
Three central moments of CIE L*a*b* colour distribution 45
Histogram of four Sobel edge directions 20
Co-occurrence matrix of four Sobel edge directions 80
Magnitude of the 16× 16 FFT of Sobel edge image 128
Histogram of relative brightness of neighboring pixels 40
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Effect of µ on sparsity
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Figure: Sparsity as function of µ for cats
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Effect of µ on retrieval
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Figure: Average precision 20 against µ for cats

Note that PicSOM uses negative examples
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Including negative examples

Including negative examples

Included negatives by negating features, i.e. negating
kernel entries between differently labelled images
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Complete precision/recall curves
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Figure: Precision/recall curve for cats
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Assessing impact of µ

Including negative examples

Average Precision scores

Obj. MKL 2-class (µ : 0.5) MKL 1-class (µ : 0.5) 1-class SVM PicSOM
AP20 AP50 #ker AP20 AP50 #ker AP20 AP50 AP20 AP50

Cat 0.52 0.46 3 0.34 0.24 2 0.14 0.13 0.25 0.25
Cow 0.29 0.20 5 0.17 0.14 3 0.14 0.12 0.25 0.20
Dog 0.37 0.36 11 0.11 0.13 2 0.11 0.12 0.28 0.28
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Conclusions

Considered CBIR task in which learning the search metric
corresponds to learning the kernel
In 1-class MKL don’t get variable sparsity by varying C
Flexible mix of 1-norm and 2-norm regularisation gives
natural control of sparsity with good performance against
PicSOM and 1-class SVM on VOC cats
Using negative (non-relevant) examples improves
performance.
SOM uses density learning to weight metrics – should
compare with same approach in kernel methods
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