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Content based image retrieval

@ Consider problem of content based image retrieval (CBIR)
using relevance feedback.

@ There are many metrics under which we can compare
images: colour, texture, objects included, etc.

@ Learning to identify the target of the search is improved if
we can identify the metric that best characterises the type
of search: eg

@ sunset scene = colour,
e Sunset over waterfall = colour & texture, etc.

@ Baseline system is PicSOM — uses 11 self-organising
maps (SOMs) to represent database of images in 11
metrics — estimates a density of relevant vs irrelevant to
weight the vertices of each SOM.

@ Implicitly reweights the metrics via the density.

John Shawe-Taylor Kernel Learning for Novelty Detection



Introduction
Motivating problem
1-class SVMs

1-class SVMs

@ Negative data is sparse so consider 1-class learning
initially.

John Shawe-Taylor Kernel Learning for Novelty Detection



Introduction
Motivating problem
1-class SVMs

1-class SVMs

@ Negative data is sparse so consider 1-class learning
initially.

@ Metrics correspond to kernels: so task is about using
combination of kernels to solve a retrieval task.

John Shawe-Taylor Kernel Learning for Novelty Detection



Introduction
Motivating problem
1-class SVMs

1-class SVMs

@ Negative data is sparse so consider 1-class learning
initially.

@ Metrics correspond to kernels: so task is about using
combination of kernels to solve a retrieval task.

@ If we include ‘learning the kernel’, we can automatically
identify the relevant metrics for the particular search.

John Shawe-Taylor Kernel Learning for Novelty Detection



Introduction
Motivating problem
1-class SVMs

1-class SVMs

@ Negative data is sparse so consider 1-class learning
initially.

@ Metrics correspond to kernels: so task is about using
combination of kernels to solve a retrieval task.

@ If we include ‘learning the kernel’, we can automatically
identify the relevant metrics for the particular search.

@ Potential to scale to very large numbers of
metrics/submetrics.
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Optimisation problem

Miny ¢ sIwl3+ Clill
subjectto (W, ¢(X;)) > 1 —¢&;
g,zo, I:1,7m
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A linear combination of kernels

Let x denote the kth kernel from a set K = {4, ..., sk} Of
kernels. We define a weighted combination of kernels like so:

K]
Kz = szfik
k=1
where z = (z,...,2k|) , z € RT.

John Shawe-Taylor Kernel Learning for Novelty Detection



Multiple Kernel Learning Method 1: constraining the 1-norm of the weight vectors
Method 2: constraining a convex combination of the 1-norm a

MKL Optimisation: Constraining the 1-norm (Recap)

Let K = |K]|, then we have the following 1-class SVM for MKL
when regularising over the weight vector using the 1-norm
(primal):

2
i 1 K
minwee 3 (I IWillz)” + C el

subjectto >, (Wk, dk(X;)) > 1 —¢;
f,'ZO, i= 1,...,m
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Constraining the 1-norm continued

The dual becomes:

ming maxe 3
subject to ZZ}:*] ajajrk(X, X)) < 3,

Z£1ai:1’
0<a;<C,i=1,...,m.
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Experimental issues

@ We ran experiments with a set of Gaussian kernels
composed of different width parameters.

@ Problem: only chose 1 kernel for learning, namely the
Gaussian kernel with the largest width parameter. This is
also true for experiments conducted with the VOC data
sets (cat, cow, dog).

@ Our conjecture: except in degenerate cases will only
choose 1 kernel.

@ A solution: Constrain a convex combination of the 1-norm
and 2-norm in the optimisation problem.
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Method 2: constraining a convex combination of the 1-norm a

MKL Optimisation: Constraining a combination of the
1-norm and 2-norm

Constraining using both these norms gives us the following
primal problem, with . controlling the sparsity trade-off,

minwe 4§ (S0 Iwell2)” + 15 I Iwel3 + Cliell
subject to Zfz <wk,¢>k(x,)> >1-¢
£>0,i=1,....m
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Constraining a combination of the 1-norm and 2-norm
continued

Let D = Z,’f:1 ||lwWg||2, then the dual is:

maxe  Wia) =S ai = $ 500 G+ 8 (Shey V)
SUbjeCt to Ok = 2321 Oz,'Oéink(X,',Xj)
0<a;<C,i=1,....m
where A=1/(1 — u) and
B = ((J| = D)+ w) /(1 = p)(1 = p+ pulJ])?), where
J = {k : zx # 0}, is the set of indices k, for which

B > uPD?,
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Combination of 1- and 2-norm continued

From the Lagrangian we get,

zk:max{O,&L(X/Dﬁ»k—/O},

1—p+pld|

Also,
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Algorithm for combination of 1- and 2-norm

We perform coordinate-wise descent in the a vector. Writing

oW ()

gi(a) = ~Oa;

where q; is the i-th coordinate of a in the argument of W(.), we
seek the solution of gj(a;) = 0 as the new value for «;.
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Algorithm for combination of 1- and 2-norm

We expand g;(«;) in a Taylor series around the current values

al:
oW (a®)  oW?(a0)
9i(aj) ~ 9 T §a2 (i —f)=0
and solve for «;. Hence our update rule for each a; becomes:
aW(al)
0 Oa;
804‘,2
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Algorithm for combination of 1- and 2-norm

Initialise o vector to zero with one element, say 9 > 0.

@ Repeat until KKT conditions satisfied or [|a” — a" ||z < e,
where ¢ is a small positive real number
e Compute update rule for each component of « using:

oW ()
_ 0 daj
aj = a,- — W
Ba/.z
e update zand D
Decision function:
m Z,

f(x)=S oy —F k(XX
() ; ’%um )z i)
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Datasets considered

@ Considered the PASCAL VOC data: cat, cow, dog
@ 11 feature sets extracted for PICSOM

Feature dimensions
DCT coefficients of average colour in rectangular grid 12
CIE L*a*b* colour of two dominant colour clusters 6
Histogram of local edge statistics 80
Haar transform of quantized HSV colour histogram 256
Histogram of interest point SIFT features 256
Average CIE L*a*b* colour 15
Three central moments of CIE L*a*b* colour distribution 45
Histogram of four Sobel edge directions 20
Co-occurrence matrix of four Sobel edge directions 80
Magnitude of the 16 x 16 FFT of Sobel edge image 128
Histogram of relative brightness of neighboring pixels 40
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Effect of 1 on sparsity

Number of kernels against varying values of mu
" T T T T T T

Number of kernels (sparsity)
>
.

Figure: Sparsity as function of x for cats
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Plot for AP20 for varying values of mu
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Effect of 1 on retrieval

Plot for AP20 for varying values of mu

MKL-SVM
- PicSOM
0.4 | = = SVM (Chen etal) |

Average Precision 20

Figure: Average precision 20 against u for cats

@ Note that PicSOM uses negative examples
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Including negative examples

@ Included negatives by negating features, i.e. negating
kernel entries between differently labelled images

Plot for AP20 for varying values of mu

o5 L (2-class) SVM

045 SVM (Chen et al)
04r

035

Average Precision 20

03f
[ R

02r

0.1
[

Figure: Average precision 20 against u for cats
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Complete precision/recall curves

1 T T T T T T
——— MKL 2-class SVM (mu = 0.5)
= = =PicSOM

09 == MKL 1-class SVM (mu = 0.5)| |
1-class SVM (mu = 0)

08 H

07 1

Recall-Precision

0 50 100 150 200 250 300 350
number of relevant images in test set

Figure: Precision/recall curve for cats
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Assessing impact of p

Experiments

Including negative examples

Average Precision scores

Obj. | MKL 2-class (i : 0.5) | MKL 1-class (i : 0.5) 1-class SVM PicSOM
AP20 AP50 #ker | AP20 AP50 #ker | AP20 AP50 | AP20 AP50
Cat | 0.52 0.46 3 0.34 0.24 2 0.14  0.13 025 0.25
Cow | 0.29 0.20 5 0.17 0.14 3 0.14 0.12 0.25 0.20
Dog | 0.37 0.36 11 0.11 0.13 2 0.11 0.12 0.28 0.28
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Conclusions

Conclusions

@ Considered CBIR task in which learning the search metric
corresponds to learning the kernel

@ In 1-class MKL don’t get variable sparsity by varying C

@ Flexible mix of 1-norm and 2-norm regularisation gives
natural control of sparsity with good performance against
PicSOM and 1-class SVM on VOC cats

@ Using negative (non-relevant) examples improves
performance.

@ SOM uses density learning to weight metrics — should
compare with same approach in kernel methods
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