Multi-Task Learning via Matrix Regularization

Andreas Argyriou

Department of Computer Science
University College London

Collaborators

- T. Evgeniou (INSEAD)
- R. Hauser (Oxford)
- A. Maurer (Stemmer Imaging)
- C.A. Micchelli (SUNY Albany)
- M. Pontil (University College London)
- Y. Ying (University of Bristol)

Outline

- Regularization with matrix variables for multi-task learning
- Learning multiple tasks on a subspace \& an alternating algorithm
- Necessary and sufficient conditions for representer theorems
- Learning convex combinations of a finite or infinite number of kernels

Learning Multiple Tasks Simultaneously

- Task $=$ supervised regression/classification task
- Learning multiple related tasks vs. learning independently
- Few data per task; pooling data across related tasks
- Should generalize well on given tasks and on new tasks (transfer learning)
- Example: prediction of consumers' preferences to products

Example (Computer Survey)

- Consumers' ratings of products [Lenk et al. 1996]
- 180 persons - each person is a task
- A number of PC models with 13 binary input variables (RAM, CPU, price etc.)
- Integer output in $\{0, \ldots, 10\}$ (likelihood of purchase)
- Can one exploit the fact that these tasks are related? What representation do we transfer to new persons/tasks ?

Learning Paradigm

- Tasks $t=1, \ldots, n$
- m examples per task: $\left(x_{t 1}, y_{t 1}\right), \ldots,\left(x_{t m}, y_{t m}\right) \in \mathbb{R}^{d} \times \mathbb{R}$
- Predict using functions $f_{t}(x)=\left\langle w_{t}, x\right\rangle$
- Matrix regularization problem w.r.t.

$$
W=\left(\begin{array}{ccc}
\mid & & \mid \\
w_{1} & \ldots & w_{n} \\
\mid & & \mid
\end{array}\right)
$$

Learning Multiple Tasks on a Subspace

- Solve the problem [Argyriou, Evgeniou, Pontil 2006]

$$
\begin{array}{cc}
\min _{\substack{w_{1}, \ldots, w_{n} \in \mathbb{R}^{d} \\
D \succ 0, \operatorname{tr}(D) \leq 1}} \sum_{t=1}^{n} \sum_{i=1}^{m} E\left(\left\langle w_{t}, x_{t i}\right\rangle, y_{t i}\right)+\gamma & \operatorname{tr}\left(W^{\top} D^{-1} W\right) \\
& \sum_{t=1}^{n}\left\langle w_{t}, D^{-1} w_{t}\right\rangle
\end{array}
$$

- Jointly convex problem
- Learning a common linear kernel $\left(K\left(x, x^{\prime}\right)=x^{\top} D x^{\prime}\right)$ within a convex set generated by infinite kernels: $\{D: D \succ 0, \operatorname{tr}(D) \leq 1\}$

Learning Multiple Tasks on a Subspace (contd.)

- The optimal values satisfy $\hat{D} \propto\left(\hat{W} \hat{W}^{\top}\right)^{\frac{1}{2}}$
- The representation learned is \hat{D} (its range is the subspace of tasks)
- To learn a new task t^{\prime}, transfer \hat{D}

$$
\min _{w \in \mathbb{R}^{d}} \sum_{i=1}^{m} E\left(\left\langle w, x_{t^{\prime} i}\right\rangle, y_{t^{\prime} i}\right)+\gamma\left\langle w, \hat{D}^{-1} w\right\rangle
$$

Alternating Minimization Algorithm

- Alternating minimization over W (supervised learning) and D (unsupervised "correlation" of tasks).

Initialization: set $D=\frac{I_{d \times d}}{d}$
while convergence condition is not true do
for $t=1, \ldots, n$, learn w_{t} independently by minimizing

$$
\sum_{i=1}^{m} E\left(\left\langle w, x_{t i}\right\rangle, y_{t i}\right)+\gamma\left\langle w, D^{-1} w\right\rangle
$$

end for
set $D=\frac{\left(W W^{\top}\right)^{\frac{1}{2}}}{\operatorname{tr}\left(W W^{\top}\right)^{\frac{1}{2}}}$
end while

Alternating Minimization (contd.)

- Compare computational cost vs. gradient descent ($\eta:=$ learning rate)

Connection to Rank Minimization

- Recent interest in the problem in matrix factorization, statistics, compressed sensing [Cai et al. 2008, Fazel et al. 2001, Izenman 1975, Liu and Vandenberghe 2008, Srebro et al. 2005]
- Regularization with the rank; relaxation with the trace norm

$$
\begin{array}{r}
\min _{W \in \mathbb{R}^{d \times n}} \mathcal{E}(W)+\gamma \operatorname{rank}(W) \\
\min _{W \in \mathbb{R}^{d \times n}} \mathcal{E}(W)+\gamma\|W\|_{t r}^{2}
\end{array}
$$

Trace norm $\|W\|_{t r}$ is the sum of the singular values of W

- Trace norm solution adequately recovers rank solution under conditions [Candès and Recht 2008] (for interpolation)

Experiment (Computer Survey)

- Consumers' ratings of products [Lenk et al. 1996]
- 180 persons (tasks)
- 8 PC models (training examples); 4 PC models (test examples)
- 13 binary input variables (RAM, CPU, price etc.) + bias term
- Integer output in $\{0, \ldots, 10\}$ (likelihood of purchase)
- The square loss was used

Experiment (Computer Survey)

- Performance improves with more tasks (for learning tasks independently, error $=16.53$)
- A single most important feature shared by all persons

Experiment (Computer Survey)

Method	RMSE
Alternating Hierarchical Bayes [Lenk et al.]	1.93

- The most important feature weighs technical characteristics (RAM, CPU, CD-ROM) vs. price

Extensions

(1) Spectral regularization:

$$
\min _{\substack{w_{1}, \ldots, w_{n} \in \mathbb{R}^{d} \\ D \in \mathcal{D}}} \sum_{t=1}^{n} \sum_{i=1}^{m} E\left(\left\langle w_{t}, x_{t i}\right\rangle, y_{t i}\right)+\gamma \operatorname{tr}\left(W^{\top} F(D) W\right)
$$

where F is a spectral matrix function:

$$
F\left(U \Lambda U^{\top}\right)=U \operatorname{diag}\left[f\left(\lambda_{1}\right), \ldots, f\left(\lambda_{d}\right)\right] U^{\top}
$$

(2) Learn a partition of tasks in K groups (subspaces):

$$
\min _{D_{1}, \ldots, D_{K} \succ 0} \sum_{t=1}^{n} \min _{w_{t} \in \mathbb{R}^{d}} \min _{k=1}^{K}\left\{\sum_{i=1}^{m} E\left(\left\langle w_{t}, x_{t i}\right\rangle, y_{t i}\right)+\gamma\left\langle w_{t}, D_{k}^{-1} w_{t}\right\rangle+\operatorname{tr}\left(D_{k}\right)\right\}
$$

Representer Theorems

- All previous formulations satisfy a multi-task representer theorem

$$
\begin{equation*}
\hat{w}_{t}=\sum_{s=1}^{n} \sum_{i=1}^{m} c_{s i}^{(t)} x_{s i} \quad \forall t \in\{1, \ldots, n\} \tag{1}
\end{equation*}
$$

Consequently, a nonlinear kernel can be used in the place of x

- All tasks are involved in this expression (unlike the single-task representer theorem \Leftrightarrow Frobenius norm regularization)
- Generally, consider any problem of the form

$$
\min _{w_{1}, \ldots, w_{n} \in \mathbb{R}^{d}} \sum_{t=1}^{n} \sum_{i=1}^{m} E\left(\left\langle w_{t}, x_{t i}\right\rangle, y_{t i}\right)+\Omega(W)
$$

Representer Theorems (contd.)

- Definitions:
$\mathbf{S}_{+}^{n}=$ the positive semidefinite cone The function $h: \mathbf{S}_{+}^{n} \rightarrow \mathbb{R}$ is matrix nondecreasing, if

$$
h(A) \leq h(B) \quad \forall A, B \in \mathbf{S}_{+}^{n} \quad \text { s.t. } A \preceq B
$$

- Theorem: [Argyriou, Micchelli \& Pontil 2008]

Rep. thm. (1) holds if and only if there exists a matrix nondecreasing function $h: \mathbf{S}_{+}^{n} \rightarrow \mathbb{R}$ such that

$$
\Omega(W)=h\left(W^{\top} W\right) \quad \forall W \in \mathbb{R}^{d \times n}
$$

Representer Theorems (contd.)

- Theorem: [Argyriou, Micchelli \& Pontil 2008]

The standard rep. thm. for single-task learning

$$
\hat{w}=\sum_{i=1}^{m} c_{i} x_{i}
$$

holds if and only if there exists a nondecreasing function $h: \mathbb{R}_{+} \rightarrow \mathbb{R}$ such that

$$
\Omega(w)=h(\langle w, w\rangle) \quad \forall w \in \mathbb{R}^{d}
$$

- Completes previous results by [Kimeldorf \& Wahba, 1970, Schölkopf et al., 2001 etc.]

Connection to Learning the Kernel (LTK)

- General formulation

$$
R(K)=\min _{c \in \mathbb{R}^{m}}\left\{\sum_{i=1}^{m} E\left((K c)_{i}, y_{i}\right)+\gamma\langle c, K c\rangle\right\}
$$

minimize R over a convex set \mathcal{K}
[Lanckriet et al. 2004, Bach et al. 2004, Sonnenburg et al. 2006 etc.]

- If $E(\cdot, y)$ is convex then R is a convex function [Micchelli \& Pontil 2005]

$$
R(K)=\min _{v \in \mathbb{R}^{m}}\left\{\sum_{i=1}^{m} E\left(v_{i}, y_{i}\right)+\gamma\left\langle v, K^{-1} v\right\rangle\right\}
$$

A General Method for Learning the Kernel

- Convex set \mathcal{K} is generated by basic kernels
- Example 1: Finite set of basic kernels (aka MKL)
- Example 2: Linear basic kernels (\Leftrightarrow multi-task learning on a subspace)

$$
B\left(x, x^{\prime}\right)=x^{\top} D x^{\prime}
$$

where $D \succ 0, \operatorname{tr}(D) \leq 1$

- Example 3: Gaussian basic kernels

$$
B\left(x, x^{\prime}\right)=e^{-\left(x-x^{\prime}\right)^{\top} \Sigma^{-1}\left(x-x^{\prime}\right)}
$$

where Σ belongs in a convex subset of the p.s.d. cone

A General Method for Learning the Kernel (contd.)

[Argyriou, Micchelli \& Pontil 2005]
Initialization: Given an initial kernel $K^{(1)}$ in the convex set \mathcal{K}
while convergence condition is not true do

1. Compute $\hat{c}=\underset{c \in \mathbb{R}^{m}}{\operatorname{argmin}}\left\{c^{\top} K_{\mathrm{x}}^{(t)} c+4 \gamma \mathcal{E}^{*}(c)\right\} \quad$ (dual problem)
2. Find a basic kernel \hat{B} maximizing $\hat{c}^{\top} B_{\mathrm{x}} \hat{c}$
3. Compute $K^{(t+1)}$ as the optimal convex combination of \hat{B} and $K^{(t)}$ end while

- Always converges to an optimal kernel; however, step 2 is non-convex for e.g. Gaussian kernels (but one-parameter Gaussians is solvable)

Learning the Kernel in Semi-Supervised Learning

$$
\max _{K \in \mathcal{K}} \min _{c \in \mathbb{R}^{\ell}}\left\{\sum_{i=1}^{\ell} E^{*}\left(c_{i}, y_{i}\right)+\gamma\langle c, K c\rangle\right\}
$$

[Argyriou, Herbster \& Pontil 2005]

- Here, $\mathcal{K}=\left\{\sum_{i=1}^{N} \lambda_{i}\left(\mathbf{L}_{i}^{+}\right)_{\text {labeled }}: \lambda_{i} \geq 0, \sum_{j} \lambda_{j}=1\right\}$ where $\mathbf{L}_{1}, \ldots, \mathbf{L}_{N}$ are Laplacians.

LTK/MTL Connection to Sparsity

- LTK: feature space interpretation
[Bach et al. 2004, Micchelli \& Pontil 2005]

$$
\min _{v_{1}, \ldots, v_{N} \in \mathbb{R}^{m}}\left\{\sum_{i=1}^{m} E\left(\sum_{j=1}^{N}\left\langle v_{j}, \Phi_{j}\left(x_{i}\right)\right\rangle, y_{i}\right)+\gamma\left(\sum_{j=1}^{N}\left\|v_{j}\right\|\right)^{2}\right\}
$$

- Mixed L_{1} / L_{2} norm; used in group Lasso and Cosso in statistics [Antoniadis \& Fan 2001, Bakin 1999, Grandvalet \& Canu, 1999, Lin \& Zhang 2003, Obozinski et al. 2006, Yuan \& Lin 2006]
- LTK: learns a small set of feature maps / sparse combination of kernels MTL: learns a small set of common features shared by all the tasks

Conclusion

- General framework for jointly learning multiple tasks, based on matrix regularization
- Use an alternating algorithm to learn tasks that lie on a common subspace; this algorithm is simple and efficient
- Necessary and sufficient conditions for representer theorems (in both the multi-task and single-task setting)
- Multi-task learning can be viewed as an instance of learning combinations of infinite kernels
- More generally, we can learn combinations of (finite or infinite) kernels with a greedy incremental algorithm

References

[R. K. Ando and T. Zhang. A framework for learning predictive structures from multiple tasks and unlabeled data. JMLR 2005]
[A. Argyriou, T. Evgeniou and M. Pontil. Multi-task feature learning. NIPS 2006.]
[A. Argyriou, C. A. Micchelli and M. Pontil. Learning convex combinations of continuously parameterized basic kernels. COLT 2005]
[F. R. Bach, G. R. G. Lanckriet and M. I. Jordan. Multiple kernel learning, conic duality, and the SMO algorithm. ICML 2004]
[B. Bakker and T. Heskes. Task clustering and gating for Bayesian multi-task learning. JMLR 2003]
[J. Baxter. A model for inductive bias learning. JAIR 2000]
[R. Caruana. Multi-task learning. JMLR 1997]

References

[T. Evgeniou, C.A. Micchelli and M. Pontil. Learning multiple tasks with kernel methods. JMLR 2005]
[G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui and M. I. Jordan. Learning the kernel matrix with semidefinite programming. JMLR 2004]
[A. Maurer. Bounds for linear multi-task learning. JMLR 2006]
[C.A. Micchelli and M. Pontil. Learning the kernel function via regularization. JMLR 2005]
[C. S. Ong, A. J. Smola, R. C. Williamson. Learning the kernel with hyperkernels. JMLR 2005]
[R. Raina, A. Y. Ng and D. Koller. Constructing informative priors using transfer learning. ICML 2006]
[N. Srebro, J.D.M. Rennie and T.S. Jaakkola. Maximum-margin matrix factorization. NIPS 2004]

