
Multi-Task Learning via Matrix Regularization

Andreas Argyriou

Department of Computer Science
University College London



Collaborators

• T. Evgeniou (INSEAD)

• R. Hauser (Oxford)

• A. Maurer (Stemmer Imaging)

• C.A. Micchelli (SUNY Albany)

• M. Pontil (University College London)

• Y. Ying (University of Bristol)

1



Outline

• Regularization with matrix variables for multi-task learning

• Learning multiple tasks on a subspace & an alternating algorithm

• Necessary and sufficient conditions for representer theorems

• Learning convex combinations of a finite or infinite number of kernels

2



Learning Multiple Tasks Simultaneously

• Task = supervised regression/classification task

• Learning multiple related tasks vs. learning independently

• Few data per task; pooling data across related tasks

• Should generalize well on given tasks and on new tasks

(transfer learning)

• Example: prediction of consumers’ preferences to products

3



Example (Computer Survey)

• Consumers’ ratings of products [Lenk et al. 1996]

• 180 persons – each person is a task

• A number of PC models with 13 binary input variables (RAM, CPU,
price etc.)

• Integer output in {0, . . . , 10} (likelihood of purchase)

• Can one exploit the fact that these tasks are related? What
representation do we transfer to new persons/tasks ?

4



Learning Paradigm

• Tasks t = 1, . . . , n

• m examples per task: (xt1, yt1), . . . , (xtm, ytm) ∈ IRd × IR

• Predict using functions ft(x) = 〈wt, x〉

• Matrix regularization problem w.r.t.

W =



w1 . . . wn





5



Learning Multiple Tasks on a Subspace

• Solve the problem [Argyriou, Evgeniou, Pontil 2006]

min
w1,...,wn∈IRd

DÂ0, tr(D)≤1

n
∑

t=1

m
∑

i=1

E (〈wt, xti〉, yti) + γ tr(W>D−1W )

↑
n
∑

t=1
〈wt, D

−1wt〉

• Jointly convex problem

• Learning a common linear kernel (K(x, x′) = x>Dx′) within a convex
set generated by infinite kernels: {D : D Â 0, tr(D) ≤ 1}

6



Learning Multiple Tasks on a Subspace (contd.)

• The optimal values satisfy D̂ ∝ (ŴŴ>)
1
2

• The representation learned is D̂ (its range is the subspace of tasks)

• To learn a new task t′, transfer D̂

min
w∈IRd

m
∑

i=1

E (〈w, xt′i〉, yt′i) + γ 〈w, D̂−1w〉

7



Alternating Minimization Algorithm

• Alternating minimization over W (supervised learning) and D
(unsupervised “correlation” of tasks).

Initialization: set D =
Id×d

d

while convergence condition is not true do

for t = 1, . . . , n, learn wt independently by minimizing
m
∑

i=1

E(〈w, xti〉, yti) + γ 〈w,D−1w〉

end for

set D = (WW>)
1
2

tr(WW>)
1
2

end while

8



Alternating Minimization (contd.)

Reg.

error

0 20 40 60 80 100
24

25

26

27

28

29

iterations

Reg

 

 

η = 0.05
η = 0.03
η = 0.01
Alternating

secs.

50 100 150 200
0

1

2

3

4

5

6

tasks

seconds

 

 

Alternating

η = 0.05

#iterations #tasks
(green = alternating) (blue = alternating)

• Compare computational cost vs. gradient descent (η := learning rate)

9



Connection to Rank Minimization

• Recent interest in the problem in matrix factorization, statistics,

compressed sensing [Cai et al. 2008, Fazel et al. 2001, Izenman 1975,

Liu and Vandenberghe 2008, Srebro et al. 2005]

• Regularization with the rank; relaxation with the trace norm

min
W∈IRd×n

E(W ) + γ rank(W )

min
W∈IRd×n

E(W ) + γ ‖W‖2
tr

Trace norm ‖W‖tr is the sum of the singular values of W

• Trace norm solution adequately recovers rank solution under conditions
[Candès and Recht 2008] (for interpolation)

10



Experiment (Computer Survey)

• Consumers’ ratings of products [Lenk et al. 1996]

• 180 persons (tasks)

• 8 PC models (training examples); 4 PC models (test examples)

• 13 binary input variables (RAM, CPU, price etc.) + bias term

• Integer output in {0, . . . , 10} (likelihood of purchase)

• The square loss was used

11



Experiment (Computer Survey)

Test

error

0 50 100 150 200
4.3

4.4

4.5

4.6

4.7

4.8

4.9

5

5.1

5.2

5.3

Eig(D)

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

#tasks

• Performance improves with more tasks
(for learning tasks independently, error = 16.53)

• A single most important feature shared by all persons

12



Experiment (Computer Survey)

u1

TE RAM SC CPU HD CD CA CO AV WA SW GU PR
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Method RMSE
Alternating 1.93

Hierarchical Bayes
[Lenk et al.]

1.90

• The most important feature weighs technical characteristics (RAM,
CPU, CD-ROM) vs. price

13



Extensions

(1) Spectral regularization:

min
w1,...,wn∈IRd

D∈D

n
∑

t=1

m
∑

i=1

E (〈wt, xti〉, yti) + γ tr(W>F (D)W )

where F is a spectral matrix function:

F (UΛU>) = U diag[f(λ1), ..., f(λd)] U>

(2) Learn a partition of tasks in K groups (subspaces):

min
D1,...,DKÂ0

n
∑

t=1

min
wt∈IRd

K

min
k=1

{

m
∑

i=1

E (〈wt, xti〉, yti) + γ〈wt, D
−1
k wt〉 + tr(Dk)

}

14



Representer Theorems

• All previous formulations satisfy a multi-task representer theorem

ŵt =

n
∑

s=1

m
∑

i=1

c
(t)
si xsi ∀ t ∈ {1, . . . , n} (1)

Consequently, a nonlinear kernel can be used in the place of x

• All tasks are involved in this expression (unlike the single-task
representer theorem ⇔ Frobenius norm regularization)

• Generally, consider any problem of the form

min
w1,...,wn∈IRd

n
∑

t=1

m
∑

i=1

E (〈wt, xti〉, yti) + Ω(W )

15



Representer Theorems (contd.)

• Definitions:

S
n
+ = the positive semidefinite cone

The function h : Sn
+ → IR is matrix nondecreasing, if

h(A) ≤ h(B) ∀ A,B ∈ S
n
+ s.t. A ¹ B

• Theorem: [Argyriou, Micchelli & Pontil 2008]
Rep. thm. (1) holds if and only if there exists a matrix nondecreasing

function h : Sn
+ → IR such that

Ω(W ) = h(W>W ) ∀ W ∈ IRd×n

16



Representer Theorems (contd.)

• Theorem: [Argyriou, Micchelli & Pontil 2008]
The standard rep. thm. for single-task learning

ŵ =

m
∑

i=1

cixi

holds if and only if there exists a nondecreasing function h : IR+ → IR
such that

Ω(w) = h(〈w,w〉) ∀w ∈ IRd

• Completes previous results by [Kimeldorf & Wahba, 1970, Schölkopf et

al., 2001 etc.]

17



Connection to Learning the Kernel (LTK)

• General formulation

R(K) = min
c∈IRm

{

m
∑

i=1

E
(

(Kc)i, yi

)

+ γ 〈c,Kc〉

}

minimize R over a convex set K

[Lanckriet et al. 2004, Bach et al. 2004, Sonnenburg et al. 2006 etc.]

• If E(·, y) is convex then R is a convex function [Micchelli & Pontil 2005]

R(K) = min
v∈IRm

{

m
∑

i=1

E
(

vi, yi

)

+ γ 〈v, K−1v〉

}

18



A General Method for Learning the Kernel

• Convex set K is generated by basic kernels

• Example 1: Finite set of basic kernels (aka MKL)

• Example 2: Linear basic kernels (⇔ multi-task learning on a subspace)

B(x, x′) = x>Dx′

where D Â 0, tr(D) ≤ 1

• Example 3: Gaussian basic kernels

B(x, x′) = e−(x−x′)>Σ−1(x−x′)

where Σ belongs in a convex subset of the p.s.d. cone

19



A General Method for Learning the Kernel (contd.)

[Argyriou, Micchelli & Pontil 2005]

Initialization: Given an initial kernel K(1) in the convex set K

while convergence condition is not true do

1. Compute ĉ = argmin
c∈IRm

{

c> K(t)
x

c + 4γ E∗(c)
}

(dual problem)

2. Find a basic kernel B̂ maximizing ĉ>Bx ĉ

3. Compute K(t+1) as the optimal convex combination of B̂ and K(t)

end while

• Always converges to an optimal kernel; however, step 2 is non-convex
for e.g. Gaussian kernels (but one-parameter Gaussians is solvable)

20



Learning the Kernel in Semi-Supervised Learning

max
K∈K

min
c∈IR`

{

∑̀

i=1

E∗
(

ci, yi

)

+ γ 〈c,Kc〉

}

[Argyriou, Herbster & Pontil 2005]

• Here, K =

{

N
∑

i=1

λi(L
+
i )labeled : λi ≥ 0,

∑

j λj = 1

}

where L1, . . . ,LN are Laplacians.

21



LTK/MTL Connection to Sparsity

• LTK: feature space interpretation
[Bach et al. 2004, Micchelli & Pontil 2005]

min
v1,...,vN∈IRm











m
∑

i=1

E





N
∑

j=1

〈vj, Φj(xi)〉, yi



+ γ





N
∑

j=1

‖vj‖





2










• Mixed L1/L2 norm; used in group Lasso and Cosso in statistics
[Antoniadis & Fan 2001, Bakin 1999, Grandvalet & Canu, 1999, Lin &

Zhang 2003, Obozinski et al. 2006, Yuan & Lin 2006]

• LTK: learns a small set of feature maps / sparse combination of kernels

MTL: learns a small set of common features shared by all the tasks

22



Conclusion

• General framework for jointly learning multiple tasks, based on matrix

regularization

• Use an alternating algorithm to learn tasks that lie on a common

subspace; this algorithm is simple and efficient

• Necessary and sufficient conditions for representer theorems (in both
the multi-task and single-task setting)

• Multi-task learning can be viewed as an instance of learning

combinations of infinite kernels

• More generally, we can learn combinations of (finite or infinite) kernels
with a greedy incremental algorithm

23



References

[R. K. Ando and T. Zhang. A framework for learning predictive structures from multiple

tasks and unlabeled data. JMLR 2005]

[A. Argyriou, T. Evgeniou and M. Pontil. Multi-task feature learning. NIPS 2006.]

[A. Argyriou, C. A. Micchelli and M. Pontil. Learning convex combinations of

continuously parameterized basic kernels. COLT 2005]

[F. R. Bach, G. R. G. Lanckriet and M. I. Jordan. Multiple kernel learning, conic duality,

and the SMO algorithm. ICML 2004]

[B. Bakker and T. Heskes. Task clustering and gating for Bayesian multi–task learning.

JMLR 2003]

[J. Baxter. A model for inductive bias learning. JAIR 2000]

[R. Caruana. Multi–task learning. JMLR 1997]

24



References

[T. Evgeniou, C.A. Micchelli and M. Pontil. Learning multiple tasks with kernel methods.
JMLR 2005]

[G. R. G. Lanckriet, N. Cristianini, P. Bartlett, L. El Ghaoui and M. I. Jordan. Learning
the kernel matrix with semidefinite programming. JMLR 2004]

[A. Maurer. Bounds for linear multi-task learning. JMLR 2006]

[C.A. Micchelli and M. Pontil. Learning the kernel function via regularization. JMLR
2005]

[C. S. Ong, A. J. Smola, R. C. Williamson. Learning the kernel with hyperkernels. JMLR
2005]

[R. Raina, A. Y. Ng and D. Koller. Constructing informative priors using transfer learning.
ICML 2006]

[N. Srebro, J.D.M. Rennie and T.S. Jaakkola. Maximum-margin matrix factorization.
NIPS 2004]

25


