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Outline

Regularization with matrix variables for multi-task learning
Learning multiple tasks on a subspace & an alternating algorithm
Necessary and sufficient conditions for representer theorems

Learning convex combinations of a finite or infinite number of kernels



Learning Multiple Tasks Simultaneously

Task = supervised regression /classification task
Learning multiple related tasks vs. learning independently
Few data per task; pooling data across related tasks

Should generalize well on given tasks and on new tasks

(transfer learning)

Example: prediction of consumers’ preferences to products



Example (Computer Survey)

Consumers’ ratings of products [Lenk et al. 1996]
180 persons — each person is a task

A number of PC models with 13 binary input variables (RAM, CPU,
price etc.)

Integer output in {0,...,10} (likelihood of purchase)

Can one exploit the fact that these tasks are related? \What
representation do we transfer to new persons/tasks 7



Learning Paradigm

Taskst=1,...,n
m examples per task: (41, vs1), - -, (Tem, Yem) € R? x IR
Predict using functions f;(x) = (wy, x)

Matrix regularization problem w.r.t.



Learning Multiple Tasks on a Subspace

e Solve the problem [Argyriou, Evgeniou, Pontil 2006]

min Z Z E ((we, xe:), Y1) + tr(WTD 1)

wl,...,wnERd t:]. 'I/:l
D>0, tr(D)<1

T

> (we, D™ wy)
t=1

e Jointly convex problem

e Learning a common linear kernel (K (x,x’) = x' Dx') within a convex
set generated by infinite kernels: {D : D > 0, tr(D) <1}



Learning Multiple Tasks on a Subspace (contd.)

N|—

e The optimal values satisfy D oc (WWT)
e The representation learned is D (its range is the subspace of tasks)

e To learn a new task t/, transfer D

m

A

min E ((w, zp;), yi) + 7 (w, D™ w)
i=1



Alternating Minimization Algorithm

e Alternating minimization over W (supervised learning) and D
(unsupervised “correlation” of tasks).

Iiva
d

while convergence condition is not true do

Initialization: set D =

fort =1,...,n, learn w; independently by minimizing

m

((w, z4i), y) + v (w, D~ w)
i=1

end for
wwT)z
1
tr(WW T)2

set D =

end while



Alternating Minimization (contd.)
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e Compare computational cost vs. gradient descent (7 := learning rate)



Connection to Rank Minimization

e Recent interest in the problem in matrix factorization, statistics,
compressed sensing [Cai et al. 2008, Fazel et al. 2001, Izenman 1975,
Liu and Vandenberghe 2008, Srebro et al. 2005]

e Regularization with the rank; relaxation with the trace norm

min  E(W) + yrank(W)
WEIRdxn

min W)+ | W],
W eIR4*™

Trace norm ||[W||¢, is the sum of the singular values of W

e Trace norm solution adequately recovers rank solution under conditions
[Candés and Recht 2008] (for interpolation)
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Experiment (Computer Survey)

Consumers’ ratings of products [Lenk et al. 1996]

180 persons (tasks)

8 PC models (training examples); 4 PC models (test examples)
13 binary input variables (RAM, CPU, price etc.) + bias term
Integer output in {0, ..., 10} (likelihood of purchase)

The square loss was used
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(for learning tasks independently, error = 16.53)

0.8

0.7f

0.6

0.5F

0.4r

1 2 3 4 5 6 7 8 9 10 11 12 13 14

e A single most important feature shared by all persons
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Experiment (Computer Survey)
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e The most important feature weighs technical characteristics (RAM,
CPU, CD-ROM) vs. price
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Extensions

(1) Spectral regularization:

min Z Z E ’U)t, ZCtZ> ytz) + ’)/tI'(WTF(D)W)
wlvﬁ’é’%emd t=1 i=1

where F'is a spectral matrix function:

F(UAUT) = U diag[f(A), ..., fQa)] UT

(2) Learn a partition of tasks in K groups (subspaces):

n

K

i E( T ,D; tr(D
3 i, 3 () + 5 D )+ (0 |
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Representer Theorems

e All previous formulations satisfy a multi-task representer theorem
ch Tsi vte{l,....n} (1)
s=1 1=1

Consequently, a nonlinear kernel can be used in the place of x

e All tasks are involved in this expression (unlike the single-task
representer theorem < Frobenius norm regularization)

e Generally, consider any problem of the form

Z Z E wta xtz ytz) + Q(W)

Wi nE]Rdt 1i=1
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Representer Theorems (contd.)

e Definitions:

S” = the positive semidefinite cone
The function h : S — IR is matrix nondecreasing, if

h(A) < h(B) VABeS? st A<B

e Theorem: [Argyriou, Micchelli & Pontil 2008]
Rep. thm. (1) holds if and only if there exists a matrix nondecreasing

function h : S";ﬁ — IR such that

QW) = h(WTW) vV W e RY*"
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Representer Theorems (contd.)

e Theorem: [Argyriou, Micchelli & Pontil 2008]
The standard rep. thm. for single-task learning

m
w = E C;T;
1=1

holds if and only if there exists a nondecreasing function h : IR, — IR
such that

Q(w) = h({w, w)) Yw € R

e Completes previous results by [Kimeldorf & Wahba, 1970, Scholkopf et
al., 2001 etc.]
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Connection to Learning the Kernel (LTK)

General formulation

R(K) = min, {Z E((Kc)iyi) + (e, K6>}

minimize R over a convex set IC

[Lanckriet et al. 2004, Bach et al. 2004, Sonnenburg et al. 2006 etc.]

If E(-,y) is convex then R is a convex function [Micchelli & Pontil 2005]

R(K) = min {ZE(%,%) —|—7<U,K1fu>}

cIR™
Y i=1
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A General Method for Learning the Kernel

Convex set IC is generated by basic kernels
Example 1: Finite set of basic kernels (aka MKL)

Example 2: Linear basic kernels (< multi-task learning on a subspace)
B(x,2') = 2" D’
where D > 0,tr(D) <1

Example 3: Gaussian basic kernels

B(Q?,CE/) _ 6—(sc—x’)TZ_1(x—:c/)

where Y. belongs in a convex subset of the p.s.d. cone

19



A General Method for Learning the Kernel (contd.)

[Argyriou, Micchelli & Pontil 2005]

Initialization: Given an initial kernel K1) in the convex set K

while convergence condition is not true do

1. Compute ¢ = argmin {CT K® e+ 4y 6*(0)} (dual problem)
celR™

2. Find a basic kernel B maximizing ¢ By ¢
3. Compute K(**1 as the optimal convex combination of B and K®

end while

e Always converges to an optimal kernel; however, step 2 is non-convex
for e.g. Gaussian kernels (but one-parameter Gaussians is solvable)
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Learning the Kernel in Semi-Supervised Learning

Kek ccIR?

¢
max min {ZE* (civyi) + 7 (c, Kc}}

[Argyriou, Herbster & Pontil 2005]

o Here,lC:{Z)\( Nlaveled © M >OZ A —1}

where L1, ..., Ly are Laplacians.
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LTK/MTL Connection to Sparsity

e LTK: feature space interpretation
[Bach et al. 2004, Micchelli & Pontil 2005]

2)

m N

ZE Z(vj,q)j(xi)%yi | D Il

p
1=1 71=1
\ /

L\
~~

min
’Ul,...,’UNERm

e Mixed L;/Ls norm; used in group Lasso and Cosso in statistics
[Antoniadis & Fan 2001, Bakin 1999, Grandvalet & Canu, 1999, Lin &
Zhang 2003, Obozinski et al. 2006, Yuan & Lin 2000]

e LTK: learns a small set of feature maps / sparse combination of kernels

MTL: learns a small set of common features shared by all the tasks
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Conclusion

General framework for jointly learning multiple tasks, based on matrix
regularization

Use an alternating algorithm to learn tasks that lie on a common
subspace; this algorithm is simple and efficient

Necessary and sufficient conditions for representer theorems (in both
the multi-task and single-task setting)

Multi-task learning can be viewed as an instance of learning
combinations of infinite kernels

More generally, we can learn combinations of (finite or infinite) kernels
with a greedy incremental algorithm
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