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Introduction

Multiple Kernel Learning (MKL)

Given M kernel functions K1, . . . ,KM that are potentially well
suited for a given problem, find a positive linear combination of
these kernels such that the resutling kernel K is ”optimal” in some
sense,

K (x, x′) =
M∑

m=1

dmKm(x, x′), with dm ≥ 0,
∑
m

dm = 1.

Need to learn together the kernel coefficients dm and the SVM
parameters.



Previous work

[Lanckriet et al., 04]: Semi-definite programming

[Bach et al., 04]: SMO

[Sonnenburg et al., 06]: Semi-infinite linear programming

[Rakotomamonjy et al., 08]: Gradient descent, simpleMKL
[Chapelle et al., 02]: Gradient descent for general kernel

All solve the same problem, but use different optimization
techniques. SimpleMKL has been shown to be more efficient.

We propose a Newton type optimization technique for MKL which
turns out to be even more efficient than simpleMKL.
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Objective function

Consider a hard margin SVM with a kernel K. The following
objective function is maximized:

Ω(K ) := max
αi

n∑
i=1

αiyi −
1

2

n∑
i ,j=1

αiαjK (xi , xj)

under constraint 0 ≤ αiyi ≤ C and
n∑

i=1

αi = 0.

Since finding the maximum margin solution seems to give
good empirical results, it has been proposed to extend this
idea for MKL: find the kernel that maximizes the margin or
equivalently

min
dm≥0

Ω

(
M∑

m=1

dmKm

)



Problem

The SVM objective function has been derived for finding an
hyperplane for a given kernel, not for learning the kernel
matrix.

Illustration of the problem: since Ω(dK ) = Ω(K )/d , Ω can be
trivially minimized.

This is usually fixed by adding the constraint
∑

dm ≤ 1.
But is the L1 norm on d the most appropriate?



Hyperparameter view

A more principle approach is to consider the dm as
hyperparameters and tune them on a model selection criterion.

A convenient criterion is a bound on the generalization error
[Bousquet, Herrmann, 03], T (K )Ω(K ), where T (K ) is the
re-centered trace, T (K ) =

∑
i K (xi , xi )− 1

n

∑
i ,j K (xi , xj).

Because Ω(dK ) = Ω(K )/d , this is equivalent to minimize
Ω(K ) under constraint T (K ) = constant, or

min
dm

Ω
(∑

dmKm
)
,

under constraint
∑

dmT (Km) = 1 and dm ≥ 0.

−→ The linear constraint on dm appears naturally.
−→ Identical to the ”standard” view if the Ki are centered
and normalized.



Optimization

No need for complex optimization techniques.
Simply define:

J(d) := Ω
(∑

dmKm
)

and perform a gradient based optimization of J which is twice
differentiable almost everywhere.

For a given d, let α? be the SVM solution.

gm :=
∂J

∂dm
= −1

2

∑
i ,j

α?i α
?
j K

m(xi , xj).



Second order

We consider a hard margin SVM. L2 penalization of the slacks can
be implemented by adding the identity in the set of base kernels
(resulting in automatic tuning of C ). L1 penalization is slightly
more complex: see our extended abstract.

To compute the Hessian of J, we first need to compute [Chapelle
et al., 02]:

∂α?sv
∂dm

= −K−1
sv,svK

m
sv,svα

?
sv,

where sv is the set of support vectors.
The Hessian is then:

H = Q>K−1
sv,svQ � 0 with Q := [· · ·Km

sv,svα
?
sv · · · ]1≤m≤M .



Search direction

The step direction s is a constrained Newton step found by
minimizing the quadratic problem:

min
1

2
s>Hs + s>g,

under constraints
∑

smT (Km) = 0 and s + d ≥ 0.

The quadratic form corresponds to the second order expansion of
J.
The constraints ensure that any solution on the segment [d,d + s]
satisfies the original constraints.

Finally backtracking is performed in case J(d + s) ≥ J(d).



Complexity

For each iteration:

SVM training: O(nnsv + n3
sv).

Inverting Ksv,sv is O(n3
sv), but might already be available as a

by-product of the SVM training.

Computing H: O(Mnsv(M + nsv))

Finding s: O(M3).

The number of iterations is usually less than 10.

−→ When M < nsv, computing s is not more expensive than the
SVM training.



Experiments

Comparison with simpleMKL on several UCI datasets as in
[Rakotomamonjy et al., 08]
Kernels are centered and normalized.

Relative duality gap as a function of the number of iterations:

10
0

10
1

10
2

10
3

10
−3

10
−2

10
−1

10
0

10
1

Number of iterations

R
el

at
iv

e 
du

al
ity

 g
ap

 

 

SimpleMKL
Hessian

10
0

10
1

10
2

10
−3

10
−2

10
−1

10
0

10
1

Number of iterations

R
el

at
iv

e 
du

al
ity

 g
ap

 

 

SimpleMKL
Hessian

Ionosphere Liver
n = 246,M = 442 n = 241,M = 91



Example of convergence behavior of the weights dm on Ionosphere:
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Stopping criterion: duality gap ≤ 0.01.

Mixed strategy: one initial gradient step followed by Newton
type optimization.

≈ 1 SVM call per iteration for HessianSVM (>1 if
backtracking necessary) but much more for simpleMKL
(because of line search).



Conclusion

Simple optimization strategy for MKL: requires just standard
SVM training and small QP (whose size is the number of
kernels).

Very fast method because:
1 The number of SVM trainings is small (of the order of 10)
2 The extra cost required for computing the Newton type

direction is not prohibitive.

As an aside, MKL should be considered as a model selection
problem. From this point of view, need for centering and
normalizing the kernel matrices.


