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Introduction

Multiple Kernel Learning (MKL)

Given M kernel functions Ki, ..., Kp that are potentially well
suited for a given problem, find a positive linear combination of
these kernels such that the resutling kernel K is "optimal” in some
sense,

M
Kx,x) =" dnK™(x,X), with dpp >0, > dm=1.
m=1 m

Need to learn together the kernel coefficients d,,, and the SVM
parameters.



Previous work

[Lanckriet et al., 04]: Semi-definite programming
[Bach et al., 04]: SMO
[Sonnenburg et al., 06]: Semi-infinite linear programming

[Rakotomamonjy et al., 08]: Gradient descent, simpleMKL
[Chapelle et al., 02]: Gradient descent for general kernel

All solve the same problem, but use different optimization
techniques. SimpleMKL has been shown to be more efficient.
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We propose a Newton type optimization technique for MKL which
turns out to be even more efficient than simpleMKL.



Objective function

o Consider a hard margin SVM with a kernel K. The following
objective function is maximized:

n 1 n
QK) = max Zai)/i 3 Z ajaiK(x;, %;)
' i=1

= ij=1

n
under constraint 0 < «a;y; < C and Za,- =0.
i=1
@ Since finding the maximum margin solution seems to give
good empirical results, it has been proposed to extend this
idea for MKL: find the kernel that maximizes the margin or

equivalently
M
in Q dmK™



Problem

@ The SVM objective function has been derived for finding an
hyperplane for a given kernel, not for learning the kernel
matrix.

o lllustration of the problem: since Q(dK) = Q(K)/d, Q can be
trivially minimized.

@ This is usually fixed by adding the constraint > dp, < 1.

But is the L; norm on d the most appropriate?



Hyperparameter view

@ A more principle approach is to consider the d, as
hyperparameters and tune them on a model selection criterion.

@ A convenient criterion is a bound on the generalization error
[Bousquet, Herrmann, 03], T(K)Q(K), where T(K) is the
re-centered trace, T(K) = K(x;,xj) — %Zi,j K(xi,X;).

o Because Q(dK) = Q(K)/d, this is equivalent to minimize
Q(K) under constraint T(K) = constant, or

min Q (Z de'"> ,

under constraint de T(K™) =1 and dn>0.

—— The linear constraint on d,, appears naturally.
— ldentical to the "standard” view if the K; are centered
and normalized.



Optimization

No need for complex optimization techniques.

Simply define:
J(d) = Q (Z dem)

and perform a gradient based optimization of J which is twice
differentiable almost everywhere.

For a given d, let o* be the SVM solution.

oJ 1 . xiom
&m ::E:_§ZQIQJK (xi, x;)-
ij



Second order

We consider a hard margin SVM. L, penalization of the slacks can
be implemented by adding the identity in the set of base kernels
(resulting in automatic tuning of C). Lj penalization is slightly
more complex: see our extended abstract.

To compute the Hessian of J, we first need to compute [Chapelle
et al., 02]:

*
004 __K 1 Km a*

ad SV,sv' 'sv,sv sV
m

where sv is the set of support vectors.
The Hessian is then:

H = QT sv SVQ =0 with @ _[ sv svasv ]1<m<M



Search direction

The step direction s is a constrained Newton step found by
minimizing the quadratic problem:

1
min ESTHS +s'g,

under constraints ZS’” T(K™) =0 and s+d>0.

The quadratic form corresponds to the second order expansion of
J.

The constraints ensure that any solution on the segment [d,d + s]
satisfies the original constraints.

Finally backtracking is performed in case J(d +s) > J(d).



Complexity

For each iteration:
o SVM training: O(nng, + n3,).
o Inverting Ky, sy is O(n3,), but might already be available as a
by-product of the SVM training.
e Computing H: O(Mns,(M + ns))
e Finding s: O(M?3).
The number of iterations is usually less than 10.

— When M < ng,, computing s is not more expensive than the
SVM training.



Experiments

Comparison with simpleMKL on several UCI datasets as in
[Rakotomamonjy et al., 08]
Kernels are centered and normalized.

Relative duality gap as a function of the number of iterations:
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Example of convergence behavior of the weights d,, on lonosphere:
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Nb of Grad/Hessian Call
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Stopping criterion: duality gap < 0.01.

Mixed strategy: one initial gradient step followed by Newton
type optimization.

@ ~ 1 SVM call per iteration for HessianSVM (>1 if
backtracking necessary) but much more for simpleMKL
(because of line search).



Conclusion

@ Simple optimization strategy for MKL: requires just standard
SVM training and small QP (whose size is the number of
kernels).

@ Very fast method because:

© The number of SVM trainings is small (of the order of 10)
@ The extra cost required for computing the Newton type
direction is not prohibitive.

@ As an aside, MKL should be considered as a model selection
problem. From this point of view, need for centering and
normalizing the kernel matrices.



