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The modeling of prior knowledge g p g

No learning is possible without applyingNo learning is possible without applying 
prior knowledge, or learning bias (this is the 
“no free lunch” phenomena)no free lunch  phenomena).

K l t l f i t d iKernels are a common tool for introducing 
learning bias. They are supposed to 

i k l d di hexpress prior knowledge regarding how 
likely are two domain element to have the 

l b lsame label. 



What happens in real-life?pp

In many real-life cases, a choice of a task-suitableIn many real life cases, a choice of a task suitable
kernel requires more detailed prior knowledge 
about the task at hand than is usually available toabout the task at hand than is usually available to
the designer of the learning algorithm.

Often, a learner uses its training data to choose a
kernel for SVM learning to tune up the kernelkernel for SVM learning, to tune up the kernel 

parameters and to learn under that kernel.



“Automated selection of kernels”

The workshop’s title, “Automated Selection of
Kernels”, seems to refer to the kernel 
selection aspects that are not carried out onselection aspects that are not carried out on
the basis of domain expertise  – that cannot
b t t dbe automated. 
The ‘automatization’ that the title refers to is 
probably based the use of training data forprobably based the use of training data for 
selecting kernels and for tuning up the kernel 
parametersparameters.



While there is a lot of research effort isWhile there is a lot of research effort is
devoted to the computational efficiency of 
k l l i th l l itkernel learning, the sample-complexity
implications of such learning paradigms 
remains largely outside the focus of
attention of this communityattention of this community.



Raising awareness to the 
sample costs of kernel learningsample costs of kernel learning

The use of training data for selecting and tuning learningg g g g
algorithms is commonly  done “under the table” from the
point of view of the statistical theory of generalization 
performance guarantees.

O fOne potential merit of this workshop is raising 
awareness to the sampling complexity costs of that
practice (While we may take at face value researcher’spractice. (While we may take  at face value researcher s 
practices, we tend to require more accountability from 

machines ...).)



The sample complexity questionp p y q

The question we wish to understand is to what 
extent can the simultaneous search for a kernel 
and a hypothesis with respect to that kernel lead

γ

y
to overfitting.

Given a family of kernels, K, and a margin value,   
, what sample size is needed to guarantee thatγ p g

with high probability, for every h that is a    -
margin hyperplane with respect to any kernel K in 

γ
g yp p p y

K, its empirical error is close to its true error.



The “richness” of a family of 
kernelskernels

First one has to note that if we do notFirst, one has to note, that if we do not 
restrict the family of candidate kernels,
th d d t fittithen we are doomed to overfitting.

Namely, for any possible sample labelling
there exist a kernel relative to which therethere exist a kernel relative to which there
is a large-margin hyperplane that induces
th t l b llithat labelling. 



A combinatorial measure of that 
richnessrichness
The ‘pseudo-dimension’ is a straightforward
generalization f the VC-dimension to classes
of real-valued functions. 
In the work that Nati will talk about, we show that
the pesudo-dimension of the family of kernels can
be used to provide such generalization error 
bounds. The smaller the dimension of a class of
kernels, the smaller is the sample size one needs
to avoid overfitting when searching for a kernel (and g g (

a label predictor) over that class.



Bounds for specific kernel families

We then go on to compute that dimensionWe then go on to compute that dimension 
for some natural parameterized families of
k l d bt i li tikernels, and obtain error generalization 
bounds for algorithms that use the training
data to search for a kernel within such a
familyfamily.



Other types of data for learning 
kernelskernels
There are at least three other potential sources of
data that can be used to guide the search for a
good kernel.

1. Unlabeled data, in the Semi-Supervised 
Learning (SSL) setting.

2. Data from different related tasks, in the Multi-
Task Learning (MTL) setting.

3. Data from different views of the same task –
the Multi-View setting.



Prior-Knowledge Expression –
A major (under researched?) ChallengeA major (under researched?) Challenge.

In all three settings the first challenge is to findg g
suitable formalisms for expressing prior
knowledge about the relationships between 
the external source of data and the target
classification task.

Such formalisms should, on one hand, allow 
natural expression of domain expert beliefsnatural expression of domain-expert beliefs
and, at the same time, allow derivation of provably 
significant merits of such knowledge.significant merits of such knowledge. 



Expressing SSL prior beliefsp g p

The cluster assumption is a popular high-The cluster assumption is a popular high
level (or “soft”) type of prior belief. Hardly
ever explicitly defined it asserts that dataever explicitly defined, it asserts that data 
clusters tend to have homogeneous labels. 
Roughly speaking, we wish to say
“separators that pass through low-density sepa a o s a pass oug o de s y

areas of the unlabeled distribution are 
more likely to predict well”.y p



An SSL Kernel learning challengeg g

Find formal tools for expressing suchFind formal tools for expressing such
cluster assumptions and kernel learning
algorithms that under such assumptionsalgorithms that, under such assumptions, 
utilize unlabeled data to find good kernels
for classification.



The multi-task learning settingg g

Consider the setting in which a learner is faced 
with a collection of classification tasks, that are 
related in some way.y
How can availability of labeled samples for each of
these tasks, help find a good kernel for learning, p g g
one target task in that collection?
Note that we wish to succeed on a specific targetNote that we wish to succeed on a specific target
task, rather than on average over randomly drawn 

tasks.tasks.



Kernel learning in MTLg

One way of modelling the relationships between
the different tasks is to fix a family of potential 
kernels, K, and assume that there exist some
kernel K in K that works well for all of the tasks.

By restricting the richness of K, one can 
demonstrate the utility of multi-tasking fordemonstrate the utility of multi tasking for
the average learning performance.
However not for any specific target taskHowever, not for any specific target task.



Additional task-relatedness 
assumptionsassumptions.

In [BD-Schuller 07] we propose a notion of task-
relatedness that models situations in which there is
some family of ‘task transformations’, such that all
the tasks in the MTL collection are such 
transformations of each other.

Under such assumptions, we can strengthen 
“learning a kernel that is good on the average” 
results, to learning a kernel that works well for any , g y

specific target task. 



Conclusions

The sample complexity of learning a kernel should 
be taken into account when considering automated 
kernel learning.
We analyse this sample complexity for searches 
within some types of kernel families (Nati’s talk). 
F l i th k l f “ ili ” d t thFor learning the kernel from “auxiliary” data, the 
formalization of prior knowledge is a challenge of 
prior significanceprior significance.
Such formalization should be both “user friendly” 
and allowing derivation of performance guaranteesand allowing derivation of performance guarantees.


