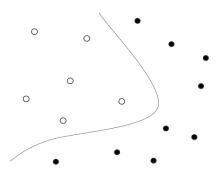
Non-Sparse Multiple Kernel Learning

Marius Kloft
Pavel Laskov

Ulf Brefeld Sören Sonnenburg

Problem Setting

Binary classification



Given: labels y_i

 $data x_i$

p views on the data, each encoded by a kernel K_i , i = 1,...,p.

Some Baseline Approaches

Train a classifier on...

(1) the uniform kernel mixture $K = \sum_{j=1}^{p} \beta_j K_j, \ \beta_1 = ... = \beta_p = \frac{1}{p}$

Problems:

arbritrary choice irrelevant (noise) kernels are considered

(2) a single kernel K_i , $i \in \{1,...,p\}$ which is optimal in model selection (e.g. cross-validation)

Problems:

useful information discarded training time consuming (*p* nested loops)

Multiple Kernel Learning (MKL) Approach

Simultaneously learning a convex combination $K=\sum_{j=1}^p \beta_j K_j$, and a model f(K), such that the expected test error R[f(K)] is minimal in K. [Lanckriet et al., 2004; Bach et al., 2004, Sonnenburg et al., 2006]

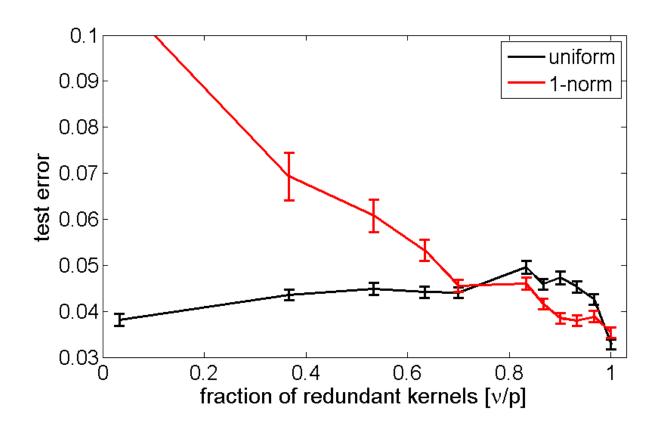
Optimization Problem

$$\begin{split} \min_{\beta} \quad & \text{svm}(\sum_{j=1}^p \beta_j K_j) \;, \quad \text{s.t.} \quad \boldsymbol{\beta} \geq 0, \\ \|\boldsymbol{\beta}\|_1 = 1 \end{split}$$
 where $\text{svm}(K) = \max_{\boldsymbol{\alpha}} \quad \mathbf{1}' \boldsymbol{\alpha} - \frac{1}{2} \boldsymbol{\alpha}' D(\mathbf{y}) K D(\mathbf{y}) \boldsymbol{\alpha}$ s.t. $0 < \boldsymbol{\alpha} < \eta \;; \quad \mathbf{y}' \boldsymbol{\alpha} = 0$

 $\beta_i = 0$ for most i: regular MKL finds a sparse combination of kernels

Problem: kernels often encode complementary properties of the data

Multiple Kernel Learning (MKL) Approach



Problem: kernels often encode complementary properties of the data

Non-Sparse MKL

We have seen: a sparse MKL may be inappropriate.

Remedy: we substitute the $\|\beta\|_1=1$ constraint by $\|\beta\|_2=1$.

Optimization Problem

$$\begin{split} \min_{\boldsymbol{\beta}} \quad & \operatorname{svm}(\sum_{i=1}^p \beta_j K_j) \;, \quad \text{s.t.} \quad \boldsymbol{\beta} \geq 0, \quad \|\boldsymbol{\beta}\|_2 = 1 \\ \text{where} \quad & \operatorname{svm}(K) = \max_{\boldsymbol{\alpha}} \quad \mathbf{1}' \boldsymbol{\alpha} - \frac{1}{2} \boldsymbol{\alpha}' D(\mathbf{y}) K D(\mathbf{y}) \boldsymbol{\alpha} \\ \text{s.t.} \quad & 0 \leq \boldsymbol{\alpha} \leq \boldsymbol{\eta} \;; \quad \mathbf{y}' \boldsymbol{\alpha} = 0 \end{split}$$

Problem: ℓ_2 -norm ruins convexity.

Convex Relaxation

Remedy: we relax the ℓ_2 -norm equality constraint $\|\beta\|_2 = 1$ to $\|\beta\|_2 \le 1$.

We show:

Theorem Let (α^*, β^*) be optimal points of the relaxed ℓ_2 -regularized MKL problem and K_1, \ldots, K_p be positive definite. Then we have $\|\beta^*\|_2 = 1$.

Approximation is tight.

Min-Max Problem

Hence we have:

Min-Max problem. Given kernel matrices $K_1, ..., K_p$.

$$\begin{split} \min_{\beta} \quad & \text{svm}(\sum_{j=1}^p \beta_j K_j) \;, \quad \text{s.t.} \quad \boldsymbol{\beta} \geq 0, \quad \|\boldsymbol{\beta}\|_2 \leq 1 \\ \text{where} \quad & \text{svm}(K) = \max_{\boldsymbol{\alpha}} \quad \quad \mathbf{1}'\boldsymbol{\alpha} - \frac{1}{2}\boldsymbol{\alpha}'D(\mathbf{y})KD(\mathbf{y})\boldsymbol{\alpha} \\ \text{s.t.} \quad & 0 \leq \boldsymbol{\alpha} \leq \boldsymbol{\eta} \;; \quad \mathbf{y}'\boldsymbol{\alpha} = 0 \end{split}$$

Optimization of Min-Max Problem by

→ Translation into semi-infinite program (SIP) [Sonnenburg et al., 2006]

SIP

Hence we arrive at:

Optimization problem (SIP). Given kernel matrices $K_1, ..., K_p$

$$\begin{array}{ll} \min_{\Theta, \boldsymbol{\beta}} & \Theta \\ s.t. & \Theta \geq \mathbf{1}'\boldsymbol{\alpha} - \frac{1}{2}\boldsymbol{\alpha}'D(\mathbf{y})\sum_{j=1}^{p}\beta_{j}K_{j}D(\mathbf{y})\boldsymbol{\alpha} \\ & \forall \boldsymbol{\alpha} \in \mathbb{R}^{n} \quad \textit{with} \quad \boldsymbol{y}'\boldsymbol{\alpha} = 0, \ \boldsymbol{0} \leq \boldsymbol{\alpha} \leq \boldsymbol{1} \\ & \|\boldsymbol{\beta}\|_{2} \leq 1; \quad \boldsymbol{\beta} \geq \boldsymbol{0} \ . \end{array}$$

Optimization by column generation:

Step 1: solve $SVM(\alpha)$

Step 2: optimize for β : quadratically constrained program (QCP)

Experiment 1: Toy Experiment

Data set

Goal: generation of p=30 kernel matrices $K_1, ..., K_p$ for different "levels of kernel redundancy"

Process:

generated two d=120 dimensional multivariate gaussians for some values of $1 \le m \le 30$, mod(m,d)=0,

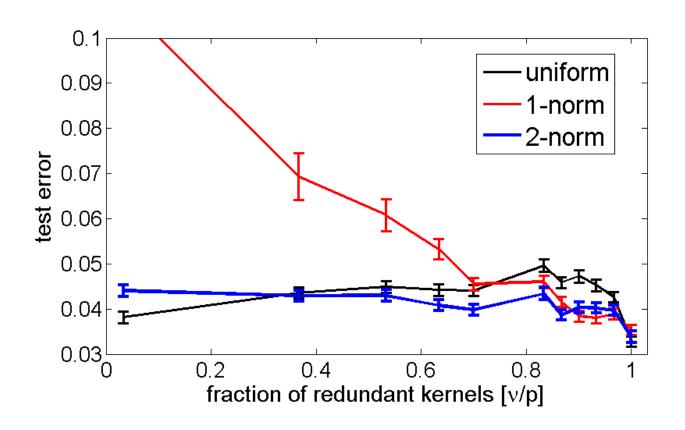
for i=1:p

 K_i = random linear transformation of a randomly drawn m-elemental feature subset

Experimental setup

kernel matrices normed $K_{ij} \to K_{ij}/\sqrt{K_{ii}K_{jj}}$ parameter tuning by grid search on a validation set 100 repetitions

Experiment 1: Results (Toy)



 ℓ_2 -MKL (blue line) achieves low test errors for most levels of redundancy.

 ℓ_2 -MKL is never significantly worse than ℓ_1 -MKL

Experiment 2: DNA

Prediction of transcription start sites in DNA sequences

[Data available at http://www.fml.tuebingen.mpg.de/raetsch/projects/arts/]

5 domain-specific kernels:

TSS signal: weighted degree shift kernel on TSS signal

promoter: spectrum kernel on TSS upstream

1st exon: spectrum kernel on TSS downstream

energy: linear kernel on binding stacking energies

angles: linear kernel on angle of dinucleotides

Experimental setup:

50K-elemental independent test set

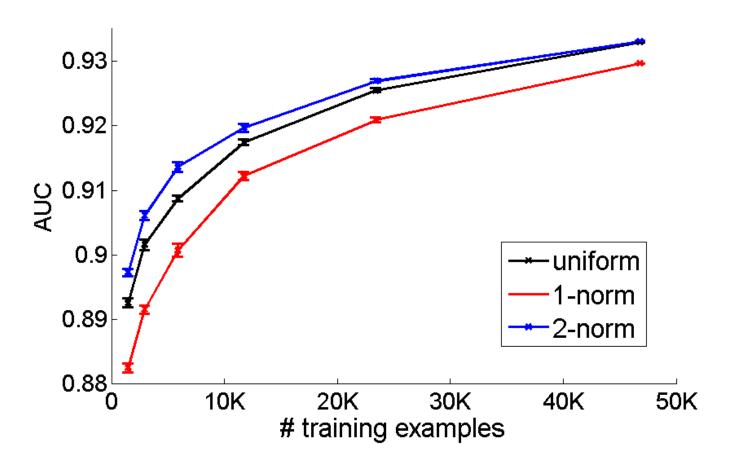
Kernel matrices normalized $K_{ij}
ightarrow K_{ij}/\sqrt{K_{ii}K_{jj}}$

SVM soft margin parameter tuning by grid search on a validation set

held out test set

100 repetitions

Experiment 2: Results (DNA)



 ℓ_2 -MKL outperforms ℓ_1 -MKL and the uniform mixture at small and large scales

Conclusion

Non-sparse multiple kernel learning

 ℓ_2 -penalty on the kernel mixture

problem not convex

but: tight approximation was shown

Empirical evaluation:

 ℓ_1 -MKL was often outperformed by uniform mixture

 ℓ_2 -MKL best prediction model in our experiments

If you like to try out yourself...:

http://www.shogun-toolbox.org/

The End

Thank you! 😃

References

- Bach, F., Lanckriet, G., Jordan, M.: Multiple Kernel Learning, Conic Duality, and the SMO algorithm. In: Proceedings of the Twenty-first International Conference (ICML 2004).
- Lanckriet, G., Christianini, N., Bartlett, P., El Ghaoui, L., Jordan, M.: Learning the Kernel Matrix with Semidefinite Programming. In: Journal of Machine Learning Research, 5(Jan):27--72, 2004.
- Rakotomamonjy, A., Bach, F. R., Canu, S., Grandvalet, Y.: SimpleMKL. In: Journal of Machine Learning Research, 9(Nov):2491--2521, 2008.
- Sonnenburg, S., Rätsch, G., Schäfer, C., Schölkopf, B.: Large Scale Multiple Kernel Learning. In: Journal of Machine Learning Research, 7(Jul):1531--1565, 2006.
- Sonnenburg, S., Zien, A., Rätsch, G.: ARTS: accurate recognition of transcription starts in human. In: Bioinformatics, 22(14):472--e480, 2006.
- Xu, Z., Jin, R., King, I., Lyu, M.: An Extended Level Set Method for Efficient Multiple Kernel Learning. to appear (NIPS).