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Problem Setting

Binary classification

Given:  labels yi

data xi

p views on the data, each encoded by a kernel
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Some Baseline Approaches

Train a classifier on…

(1) the uniform kernel mixture

Problems:  

arbritrary choice

irrelevant (noise) kernels are considered

(2) a single kernel

which is optimal in model selection (e.g. cross-validation)

Problems:  

useful information discarded

training time consuming (p nested loops)
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Multiple Kernel Learning (MKL) Approach

Simultaneously learning a convex combination ,

and a model           , such that the expected test error is minimal in K.

[Lanckriet et al., 2004;  Bach et al., 2004,  Sonnenburg et al., 2006]

Optimization Problem

where

for most i:  regular MKL finds a sparse combination of kernels

Problem: kernels often encode complementary properties of the data
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Multiple Kernel Learning (MKL) Approach

Problem: kernels often encode complementary properties of the data
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Non-Sparse MKL

We have seen: a sparse MKL may be inappropriate.

Remedy:    we substitute the constraint by .

Optimization Problem

where

Problem:    -norm ruins convexity.
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Convex Relaxation

Remedy:  we relax the -norm equality constraint

to .

We show:

No:

Approximation is tight.
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Min-Max Problem
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Hence we have:

Min-Max problem.  Given kernel matrices .

where

Optimization of Min-Max Problem by

 Translation into semi-infinite program (SIP)  [Sonnenburg et al., 2006]

K1; :::;Kp



SIP
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Hence we arrive at:

Optimization problem (SIP).  Given kernel matrices .

Optimization by column generation:

Step 1: solve SVM(α)

Step 2: optimize for β: quadratically constrained program (QCP)

K1; :::;Kp



Experiment 1:  Toy Experiment

Data set

Goal: generation of p=30 kernel matrices K1,…,Kp for different “levels of

kernel redundancy“

Process:

generated two d=120 dimensional multivariate gaussians

for some values of 1≤m≤30, mod(m,d)=0, 

for i=1:p

Ki = random linear transformation of a randomly drawn m-

elemental feature subset

Experimental setup

kernel matrices normed

parameter tuning by grid search on a validation set

100 repetitions
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Experiment 1:  Results (Toy)
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-MKL (blue line) achieves low test errors for most levels of redundancy.

-MKL is never significantly worse than -MKL
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Experiment 2:  DNA

Prediction of transcription start sites in DNA sequences

[Data available at http://www.fml.tuebingen.mpg.de/raetsch/projects/arts/]

5 domain-specific kernels:

TSS signal: weighted degree shift kernel on TSS signal

promoter: spectrum kernel on TSS upstream

1st exon: spectrum kernel on TSS downstream

energy: linear kernel on binding stacking energies

angles: linear kernel on angle of dinucleotides

Experimental setup:

50K-elemental independent test set

Kernel matrices normalized

SVM soft margin parameter tuning by grid search on a validation set

held out test set

100 repetitions
12

Kij !Kij=
p
KiiKjj



Experiment 2:  Results (DNA)
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-MKL outperforms -MKL and the uniform mixture at small

and large scales
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Conclusion

Non-sparse multiple kernel learning

-penalty on the kernel mixture

problem not convex  

but: tight approximation was shown

Empirical evaluation:

-MKL was often outperformed by uniform mixture

-MKL best prediction model in our experiments

If you like to try out yourself…:

http://www.shogun-toolbox.org/
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The End

Thank you!
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