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Motivation

B Kernel methods: widely and successfully used in ML.
B Key component: definition of kernel.
® Arbitrary kernel: any PDS kernel can be used.

B But, the choice is critical to the success: poor
selections may lead to sub-optimal performances.

® |nstead: use sample points to learn the kernel.

® How do we learn efficiently kernels for sequence
data?
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Previous Work

® (Lanckriet et al.,, 2004):
® |earning kernel matrix; transductive setting.

® SDP formulation; interior point method (Kim et
al., 2008).

® (Ong, Smola,Williamson, 2005):
® kernel function, hyperkernels, convex combinations
of infinitely many kernels, SDP formulation.

® (Miccheli and Pontil, 2005; Argyriou, Miccheli and
Pontil, 2005):

® kernel function.
® DC program (difference of convex functions).

Learning Sequence Kernels page 3 NIPS 2008



Counting Transducers
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® X is an automaton representing a string or any
other regular expression.

® Alphabet ¥ = {a, b}.
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SVM Kernel Learning Formulation
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where A > 0 determines the family of kernels.
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Structural Risk Minimization (SRM)

(Vapnik, 1995)

® Principle: consider an infinite sequence of hypothesis
spaces ordered for inclusion:

chﬂ2c...cﬂn...

Then, select hypothesis h minimizing the trade-off:

A

h = argmin error(h) 4+ capacity-measure(H,,h).
he H, neN
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Count-Based Kernels
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Kernel matrix:
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SVM - Dual Optimization Problem
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Minimax Property

® By von Neumann’s generalized minmax theorem:

] F = in £ .
SR sy Pl ) = oy i Pl o

B max-min optimization:

p
: T T~T 2

max min F(u, o) = max2a 1 — max g oY  Xi)©.
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Simplification

max 2c ' 1 — max
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SVM - QP Formulation
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SVM - Retrieving U
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Experiments

B Dataset:
® Regression: sentiment analysis dataset.
® 2,000 data points.
® Bigram count features.
| Set-up:
® Baseline: bigram kernel with uniform weights.
® |O-fold cross-validation.

® Increasing number of bigrams.
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Feature Selection

| Kitchen appliances:
® Gives large weights to discriminative features:

® ogreat_little, great product,is_perfect, are_great,
and looks, beautiful and, ...

® 2 shame, doesn't_work, very poor, return_it,
way too, very_disappointed, after_just,
bother with, ...

® /ero weight to many features (L|-regularization
encourages sparse solution).
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L2 Regularization

Comparison Plot
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Conclusion

| Efficient algorithms for learning count-based
sequence kernels (QP formulation, iterative
method).

B Learning kernels effective based on empirical
evidence.

® How do we learn more complex rational kernels!?

® How do we scale algorithms to even larger data
sets!
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