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Motivation

Kernel methods: widely and successfully used in ML.

Key component: definition of kernel.

Arbitrary kernel: any PDS kernel can be used. 

But, the choice is critical to the success: poor 
selections may lead to sub-optimal performances.

Instead: use sample points to learn the kernel.

How do we learn efficiently kernels for sequence 
data?
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Previous Work

(Lanckriet et al., 2004): 

• learning kernel matrix; transductive setting. 

• SDP formulation; interior point method (Kim et 
al., 2008).

(Ong, Smola, Williamson, 2005):

• kernel function, hyperkernels, convex combinations 
of infinitely many kernels, SDP formulation.

(Miccheli and Pontil, 2005; Argyriou, Miccheli and 
Pontil, 2005):

• kernel function.

• DC program (difference of convex functions).
3
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Counting Transducers

X is an automaton representing a string or any 
other regular expression.

Alphabet               .

0

a:ε/1
b:ε/1

1/1X:X/1

a:ε/1
b:ε/1

bbabaabba

εεabεεεεε εεεεεabεε

4

x = abx = abx = ab

Σ = {a, b}
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SVM Kernel Learning Formulation

also report the results of experiments with our sequence learning

techniques in both classification and regression tasks.

The remainder of this paper is organized as follows. Section 2

introduces the definition of weighted transducers and rational ker-

nels and points out some important properties of positive definite

symmetric kernels. Section 3 gives a general formulation of the

problem of learning rational kernels. In Section 4, we show that

the problem of learning count-based kernels can be reduced to a

simple QP both in the case of the SVMs and KRR objective func-

tions. For KRR, we further describe in Section 4.4 an an alternative

solution based on a closed-form solution for the optimal kernel ma-

trix. Section 5 reports the results of our experiments with learning

count-based rational kernels in both classification and regression

tasks.

2. PRELIMINARIES

This section introduces the definition of rational kernels and their

main properties, which we will use in our formulation of the learn-

ing problem. We will follow the definitions and terminology of

[11]. The representation and computation of rational kernels is

based on weighted finite-state transducers.

2.1. Weighted transducers

Weighted finite-state transducers are finite automata in which each

transition is augmented with an output label in addition to the fa-

miliar input label and some real-valued weight that may represent

a cost or a probability [23]. Input (output) labels are concatenated

along a path to form an input (output) sequence. The weights of

the transducers considered here are non-negative real values.

Figure 1(a) shows an example of a weighted finite-state trans-

ducer with the same input and output alphabet. A path from an

initial state to a final state is an accepting path and its weight is

obtained by multiplying the weights of its constituent transitions

and the weight of the final state, which is displayed after the slash

in the figure. We will assume a common alphabet Σ for the in-

put and output symbols and will denote by ε the empty string
or null symbol. The weight associated by a weighted transducer

T to a pair of strings (x, y) ∈ Σ∗ × Σ∗ is denoted by T (x, y)
and is obtained by summing the weights of all accepting paths

with input label x and output label y. The transducer T of Fig-

ure 1(a) associates to the pair (abb, bab) the weight T (abb, bab) =
.1× .3× .5× 1 + .2× .4× .5× 1, since it admits two paths with
input label abb and output label bab.

For any transducer T , T−1 denotes its inverse, that is the trans-

ducer obtained from T by swapping the input and output labels of

each transition. Thus, for all x, y ∈ Σ∗, we have T−1(x, y) =
T (y, x). The composition of two weighted transducers T1 and T2

with matching input and output alphabets Σ is a weighted trans-

ducer denoted by T1 ◦ T2 and for all x, y ∈ Σ∗ defined by:

(T1 ◦ T2)(x, y) =
X

z∈Σ∗

T1(x, z) T2(z, y), (1)

when the sum is well-defined and in R+ ∪ {+∞} [23]. Note that
T (x, y) is the sum of the weights of all the accepting paths of

X ◦ T ◦ Y , where X and Y are acceptors of the strings x and
y with weight one. There is an efficient algorithm for computing
the composition of two weighted transducers T1 and T2 in time

O(|T1||T2|), where |T1| is the size of T1 and |T2| that of T2 [11].

2.2. Rational Kernels

A sequence kernel K : Σ∗ × Σ∗ &→ R is rational if it coincides

with the function defined by a weighted transducer U , that is if
K(x, y) = U(x, y) for all x, y ∈ Σ∗. Not all rational kernels are

positive definite and symmetric (PDS), or equivalently verify the

Mercer condition, which is crucial for the convergence of training

for discriminant algorithms such as SVMs. The following is a key

theorem of [11] that will guide our formulation of the problem of

learning PDS rational kernels.

Theorem 1 ( [11]). Let T be an arbitrary weighted transducer.

Then, the function defined by the transducer U = T ◦ T−1 is a

PDS rational kernel.

Furthermore, the rational kernels used in computational biol-

ogy and natural language processing problems such as [6,8,10,12,

24] are all of this form and it has been conjectured that in fact this

represents all PDS rational kernels [11]. Thus, in what follows, we

will refer by PDS rational kernels to the rational kernelsK defined

by a transducer U = T ◦ T−1. To ensure that the finiteness of the

kernel values, we will also assume that T does not admit any cycle
with input ε. This implies that for any x ∈ Σ∗, there are finitely

many sequences z ∈ Σ∗ for which T (x, z) (= 0.

3. PROBLEM FORMULATION

We consider the standard supervised learning setting where the

learning algorithm receives a sample of m labeled points S =
((x1, y1), . . . , (xm, ym)) ∈ (X × Y )m, where X is the input

space and Y the set of labels, Y = R in the regression case,

Y = {−1, +1} in the classification case.
We will formulate the problem in the case of SVMs. The dis-

cussion for other objective functions is similar. Let K represent a

family of PDS rational kernels. We wish to select a kernel func-

tion K ∈ K that minimizes the generalization error of the SVM

predictor. Following the structural risk minimization principle [5],

the kernel should be selected by minimizing an objective function

corresponding to a bound on the generalization error.

Let {K ∈ R
m×m} denote the kernel matrix of the kernel

function K restricted to the sample S, Kij = K(xi, xj), for all
i, j ∈ [1, m], and let Y ∈ R

m×m denote the diagonal matrix of

the labels, Y = diag(y1, . . . , ym). We will denote by 0 the col-
umn matrices in R

m×1 with all its components equal to zero, and

similarly byC the constant column matrix with all elements equal

to C, where C is the trade-off parameter of the SVMs optimiza-

tion problem. Then, using the dual form of the SVM optimization

problem [4], the general optimization problem for learning kernels

can be written as

min
K∈K

max
α

2α%
1 − α%

Y
%
KYα

subject to α%
y = 0 ∧ 0 ≤ α ≤ C

K , 0 ∧ Tr[K] = Λ,

(2)

where αm ∈ R
m×1 denotes the column matrix of the dual vari-

ables αi, i ∈ [1, m] and Λ ≥ 0 a parameter controlling the trace
of the kernel matrix K, a widely used constraint when learning
kernels, see [13–17].

In general, this optimization leads to SDP programs, due to

the condition on the positive-definiteness of K. However, this
condition is not necessary when searching for kernels of the type

5

where               determines the family of kernels.Λ > 0
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Structural Risk Minimization (SRM)

Principle: consider an infinite sequence of hypothesis 
spaces ordered for inclusion:

Then, select hypothesis h minimizing the trade-off: 

H1 ⊂ H2 ⊂ · · · ⊂ Hn · · ·

training error

capacity term

bound on risk

measure of capacity

error

h = argmin
h∈Hn,n∈N

êrror(h) + capacity-measure(Hn, h).

(Vapnik, 1995)

6
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Count-Based Kernels

7

with µk = w2
k

Xik = |xi|k.

Kernel matrix: 

K(xi, xj) =
p∑

k=1

T (xi, zk)T (xj , zk)

=
p∑

k=1

w2
k |xi|k |xj |k.

K =
p∑

k=1

µkXkX!k ,
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SVM - Dual Optimization Problem

8

min
µ

max
α

F (µ,α) = 2α!1−
p∑

k=1

µkα!Y!XkX!k Yα

subject to 0 ≤ α ≤ C ∧α!y = 0

µ ≥ 0 ∧
p∑

k=1

µk‖Xk‖2 = Λ.



pageLearning Sequence Kernels NIPS 2008

Minimax Property

By von Neumann’s generalized minmax theorem:

max-min optimization:

9

min
µ∈M

max
α∈A

F (µ,α) = max
α∈A

min
µ∈M

F (µ,α).

max
α∈A

min
µ∈M

F (µ,α) = max
α∈A

2α"1− max
µ∈M

p∑

k=1

µk(α"Y"Xk)2.
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Simplification

10

max
α∈A

2α"1− max
µ∈M

p∑

k=1

µk(α"Y"Xk)2

=max
α∈A

2α"1− Λ max
k∈[1,p]

(
α"Y"Xk

‖Xk‖

)2

=max
α∈A

2α"1− Λ max
k∈[1,p]

(α"u′k)2,

with u′
k =

Y"Xk

‖Xk‖
=

Y"Xk

‖Y"Xk‖
.
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SVM - QP Formulation

11

min
α,t

− 2α!1 + Λt2

subject to 0 ≤ α ≤ C ∧α!y = 0

−t ≤ α!u′
k ≤ t,∀k ∈ [1, p].

Where u′
k =

Y"Xk

‖Xk‖
.
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SVM - Retrieving μ

12

min
α,t

− 2α!1 + Λt2

subject to 0 ≤ α ≤ C ∧α!y = 0

−t ≤ α!u′
k ≤ t,∀k ∈ [1, p].

βkβ′
k

µk =
βk + β′

k

2t‖Xk‖2
.
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Experiments

Dataset:

• Regression: sentiment analysis dataset.

• 2,000 data points.

• Bigram count features.

Set-up:

• Baseline: bigram kernel with uniform weights.

• 10-fold cross-validation.

• Increasing number of bigrams.

13
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Feature Selection

Kitchen appliances:

• Gives large weights to discriminative features:

• great_little, great_product, is_perfect, are_great, 
and_looks, beautiful_and, ...

• a_shame, doesn't_work, very_poor, return_it, 
way_too, very_disappointed, after_just, 
bother_with, ...

• Zero weight to many features (L1-regularization 
encourages sparse solution).

14
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L2 Regularization
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Conclusion

Efficient algorithms for learning count-based 
sequence kernels (QP formulation, iterative 
method).

Learning kernels effective based on empirical 
evidence.

How do we learn more complex rational kernels?

How do we scale algorithms to even larger data 
sets?
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