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Large-Margin Linear Classification
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sample complexity ≈ (B/γ)2

K(x1,x2) = 〈 φ(x1) , φ(x2) 〉
φ(x)

•Implicitly defines a Hilbert space in which 
we seek large-margin separation
•Represents our prior knowledge, or bias

Kernelized



Learning the Kernel
• Success of learning rests on choice of a “good” Kernel, 

appropriate for the task
– How can we know which kernel is “good” for the task at hand?

• Jointly learn classifier and Kernel, using the training data:
Search for a kernel from some family KKKK of allowed kernels

– Learn bandwidth, or covariance matrix of Gaussian kernel; 
other kernel parameters [Cristianini+98][Chapelle+02][Keerthi02] etc

– Linear, or convex, combination of base kernels 
[Lacnkriet+02,04][Crammer+03] ; applications, esp. in Bioinformatics 
[Sonnenburg+05][Ben-Hur&Noble05] etc

• More flexibility: lower approximation error, but higher 
estimation error

What is the sample complexity cost of this flexibil ity?



Outline
With a fixed kernel:

How does this change when the kernel is learned from 
some family K?
What is the “cost” of learning the kernel?

• Main result: Learning bound for general kernel families
– Additive increase to the sample complexity

• Examples: bounds for specific families

• Learn ∑iαiKi or just use ∑iKi ?
• Group Lasso (block-L1)

• On demand: proof technique (very simple) and why 
using the Rademacher complexity can’t work
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Previous Bounds:
Specific Kernel Families

[Lanckriet+ JMLR 2004]
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[Micchelli+ 2005]

estimation 
error ≤

Suggests a multiplicative increase in the required sample size.

Kconvex(K1, . . . ,Kk)
def
=
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KℓGaussian
def
=

{
(x1, x2) �→ e−(x1−x2)

′A(x1−x2) | psd A ∈ Rℓ×ℓ
}



Finite Cardinality K={K1,K2,...,K|K|}

For a single kernel K:

For a finite kernel family KKKK, set δδδδ←←←←δδδδ/|KKKK|, and take a union bound over “bad events”:

“bad event” for a kernel K

∃ margin-γ classifier w.r.t. K estimation
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Main Result

For any K chosen from K, and any classifier with margin γ with 
respect to K:

sample complexity ≈ (B/γ)2 + dφ(K)

dφ(K) = pseudo-dimension of K
= VC-dimension of subgraphs of K ∈ K

{ (x1,x2,t) | K(x1,x2)<t }

estimation error ≤
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An additive bound for general kernel families,
in terms of their pseodo-dimension:



dφ(Klinear), dφ(Kconvex) ≤ k

estimation 
error ≤

Bounds for Specific Kernel Families

Klinear(K1, . . . , Kk)
def
=
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Kconvex(K1, . . . , Kk)
def
=
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λi = 1






[Lanckriet+ JMLR 2004]
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Applying our result:
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input dimensionality

dφ(KGaussian) ≤ ℓ(ℓ+ 1)/2

ℓ

kℓ log2(8ekℓ)

Only diagonal A:

Only rank(A)≤k:

Bounds for Specific Kernel Families

KℓGaussian
def
=

{
(x1, x2) �→ e−(x1−x2)

′A(x1−x2) | psd A ∈ Rℓ×ℓ
}

unspecified function of 
input dimensionality 
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[Micchelli+ 2005]
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Previous result:

Applying our result:
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Additive vs. Multiplicative
Kconvex(K1, . . . , Kk)

def
=
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Sample complexity analysis:
If ∃ predictor with error err at margin γ relative to some K ∈ K,
How many sample needed to get error err+ε ?

Answer according to multiplicative bound: O
(
k(B/γ)2

ǫ2

)

Answer according to our (additive) bound: Õ
(
(B/γ)2+ k

ǫ2

)

Relaxed approach: Just use ∑iKi



Feature Space View

…

Ki(x, x
′) =

〈
φi(x), φi(x

′)
〉

φ(x) =
w =

φ2(x)
√
α2·
w2

φk(x)
√
αk·
wk

φ1(x)
√
α1·
w1

Instead of multiple kernels Ki, can think of implied feature spaces directly:

Relaxed approach: use unweighted feature space φ(x)
• K=∑iKi
• ||w||2=∑i||wi||2 required in unweighted space ≤ ||w||2 in any weighted space
• B2

K = kB2

• Estimation error bound: O




√
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Weighting each feature space by √αi ⇒ K = ∑iαiKi



Additive vs. Multiplicative
Kconvex(K1, . . . , Kk)

def
=
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i=1

λiKi | λi ≥ 0 and
k∑

i=1

λi = 1






Sample complexity analysis:
If ∃ predictor with error err at margin γ relative to some K ∈ K,
How many sample needed to get error err+ε ?

Answer according to multiplicative bound: O
(
k(B/γ)2

ǫ2

)

Answer according to our (additive) bound: Õ
(
(B/γ)2+ k

ǫ2

)

Relaxed approach: Just use ∑i Ki
• margin γ relative to some K ∈ K → margin γ relative to ∑i Ki
• B2

∑ Ki
= supx K(x,x) ≤ k·B2

K

Sample complexity: O
(
k(B/γ)2

ǫ2

)



Learn ∑iαiKi or use ∑iKi ?
Relative to margin γ for some ∑iαiKi:

• Do we have enough samples to afford the factor of k?
• Is decrease in estimation error worth the computational cost?

(maybe not if we have enough data and the estimation error is small anyway)

Flexibility with setting weights ⇒ Lower approximation error
⇒ but √k/n increase to estimation error

• Is the decrease in approximation error worth the increase in estimation error?
(and the extra computational cost)

Relative to margin γ for ∑i(1/k)Ki:

error of best margin γ
predictor with some ∑iαiKi
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Alternate View: Group Lasso

…

Ki(x, x
′) =

〈
φi(x), φi(x

′)
〉

φ(x) =
w =

φ2(x)
√
α2·
w2

φk(x)
√
αk·
wk

φ1(x)
√
α1·
w1

Instead of multiple kernels Ki, can think of implied feature spaces directly:

[Bach et al 04] Learning with Kconvex equivalent to using 
unweighted feature space φ(x) and Block-L1 regularizer ∑i||wi||

Relaxed approach: use unweighted feature space φ(x)
• K=∑iKi , B2

K = kB2

• ||w||2=∑i||wi||2 required in unweighted space ≤ ||w||2 in any weighted space

• Estimation error bound:

est error for 
group lasso

Õ
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||w||2 = ∑i||wi||2 ≤ (∑i||wi||)2

Weighting each feature space by √αi ⇒ K = ∑iαiKi



bound pseudodimension dφ(K)

covering of K of size (L)dφ(K)

covering of FK of size  (L)dφ(K) · (L)(B/ε)2

generalization error bounds in terms of log(covering number)

covering of FK of size (L)(B/ε)2

Construct covering for FK as “cross-product”:
for each kernel K in the covering of K, take the covering of FK.

standard results on covering 
numbers of the unit spherestandard result on covering 

numbers in terms of dφ

Lemma: if K, K’ are similar as 
real-valued functions, every K-
classifier can be approximated 
by K’-classifier

Proof Sketch



Rademacher vs. Covering Numbers
• Other bound rely on calculating the Rademacher complexity 
RRRR[FK] of the class of classifiers (unit norm) classifiers with 
respect to any K ∈ K
– RRRR[FK] scales with the scale of functions in FK, i.e. with B.

– Generalization error bounds depend on RRRR[FK]/γ
⇒⇒⇒⇒ Bounds based on the Rademacher Complexity 
necessarily have a multiplicative dependence on B/ γγγγ

• Covering numbers allow us to combine scale-sensitive and 
finite-dimensionality (scale insensitive) arguments
(at the cost of messier log-factors)



Learning Bounds for SVMs with 
Learned Kernels

Nati Srebro Shai Ben-David
• Bound on estimation error for large margin classifier 

with respect to kernel which is chosen, from family K, 
based on training data:

• Valid for generic kernalized L2-regularized learning

• Easy to obtain bounds for further kernel families

• For Kconvex: using ∑iKi may require k times more data
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pseudodimension of K, as 
family of real-valued functions


